Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Epidendrum radicans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9345 KiB  
Article
Epidendrumradicans Fungal Community during Ex Situ Germination and Isolation of Germination-Enhancing Fungi
by Na Yao, Tao Wang and Xiaolu Cao
Microorganisms 2022, 10(9), 1841; https://doi.org/10.3390/microorganisms10091841 - 15 Sep 2022
Cited by 4 | Viewed by 2129
Abstract
Orchids exhibit varying specificities to fungi in different microbial environments. This pilot study investigated the preference of fungal recruitment during symbiotic germination of Epidendrum radicans Pav. ex Lindl. Two different orchid substrates were used for ex situ seed baiting: pine bark and rotten [...] Read more.
Orchids exhibit varying specificities to fungi in different microbial environments. This pilot study investigated the preference of fungal recruitment during symbiotic germination of Epidendrum radicans Pav. ex Lindl. Two different orchid substrates were used for ex situ seed baiting: pine bark and rotten oak leaf, with Basidiomycota and Ascomycota as the respective dominant groups. Both substrates promoted seed germination, with a higher protocorm formation rate on pine bark (65.75%). High-throughput sequencing characterized the fungal communities of germinated protocorms. Basidiomycota was the dominant group in protocorms that symbiotically germinated on both substrates. The family-level community structures of endophytic fungi in protocorms that symbiotically germinated on both substrates were close to those of protocorms that germinated in vitro on MS1 medium. For protocorms, the dominant fungal groups recruited from substrates differed at the genus level; from pine bark, they were genera belonging to unclassified Sebacinales (41.34%), Thanatephorus (14.48%) and Fusarium (7.35%), while, from rotten oak leaf, they were Rhizoctonia (49.46%), Clitopilus (34.61%), and Oliveonia (7.96%). Four fungal isolates were successfully obtained and identified as belonging to the family Tulasnellaceae, genera Ceratobasidium and Peniophora, which could promote seed germination to the seedling stage. The data indicate that endophytic fungi for E. radicans germination on two different substrates are affected at the genus level by the substrate, with a degree of specificity at the family level. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 4774 KiB  
Article
Mycorrhizal Compatibility and Germination-Promoting Activity of Tulasnella Species in Two Species of Orchid (Cymbidium mannii and Epidendrum radicans)
by Qianyu Yang, Lijun Xu, Wei Xia, Lixiong Liang, Xiao Bai, Lubin Li, Lu Xu and Lei Liu
Horticulturae 2021, 7(11), 472; https://doi.org/10.3390/horticulturae7110472 - 5 Nov 2021
Cited by 11 | Viewed by 3138
Abstract
In nature, Orchidaceae seeds establish a relationship with orchid mycorrhizal fungi to obtain essential nutrients for germination. The orchids, Cymbidium mannii and Epidendrum radicans, have significant ornamental and economic value. We isolated and cultured mycorrhizal fungi from C. mannii, E. radicans, [...] Read more.
In nature, Orchidaceae seeds establish a relationship with orchid mycorrhizal fungi to obtain essential nutrients for germination. The orchids, Cymbidium mannii and Epidendrum radicans, have significant ornamental and economic value. We isolated and cultured mycorrhizal fungi from C. mannii, E. radicans, and C. goeringii roots. Three strains of fungi, Tulasnella calospora (Tca), T. asymmetrica (Tas), and T. bifrons (Tbi), were identified using ITS-rDNA sequencing. Their mycorrhizal compatibility, germination-promoting effects, and symbiosis with the seeds of C. mannii and E. radicans were studied in vitro using various concentrations of oatmeal agar (OA) medium. Tca exhibited significant seed-germination-promoting effects on C. mannii (92.1%) and E. radicans (84.7%) on 2.0 and 4.0 g/L OA, respectively. For Tbi and Tas, the highest germination percentages were observed on 4.0 g/L OA in E. radicans (73.60% and 76.49%, respectively). Seed germination in C. mannii was enhanced by high oatmeal concentrations (8.0 and 12.0 g/L) during symbiosis with Tas, whereas Tbi had no effect regardless of OA concentration. Tca exhibited high compatibility with C. mannii and E. radicans, and the oatmeal concentration of the medium affected this compatibility. The findings of this study will aid in the propagation of endangered orchid species for conservation and commercial purposes using mycorrhizal technology. Full article
Show Figures

Figure 1

Back to TopTop