Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Eocene lacustrine mudstone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19589 KiB  
Article
Geological Conditions and Sedimentary Models of Oligocene and Eocene Effective Source Rocks in the Northern Yinggehai Basin
by Jianxiang Pei, Gaowei Hu, Zhipeng Huo, Zhihong Chen, Yabing Chen, Xiaofei Fu, Weihong Wang, Haiyu Liu, Yanan Wang, Jingshuang Luo and Guofei Chen
J. Mar. Sci. Eng. 2025, 13(1), 100; https://doi.org/10.3390/jmse13010100 - 7 Jan 2025
Viewed by 826
Abstract
The development of the effective source rocks of the Eocene and Oligocene directly determines the oil and gas exploration potential in the northern Yinggehai Basin in China. Based on the analogy with the Hanoi Depression in Vietnam and the Yacheng District in the [...] Read more.
The development of the effective source rocks of the Eocene and Oligocene directly determines the oil and gas exploration potential in the northern Yinggehai Basin in China. Based on the analogy with the Hanoi Depression in Vietnam and the Yacheng District in the Qiongdongnan Basin and the comprehensive analysis of self-geological conditions, the development conditions of Eocene and Oligocene source rocks in the northern Yinggehai Basin are examined, focusing on tectonic evolution, sedimentary facies, and the paleoenvironment. Finally, the sedimentary models for the effective source rocks are established. The tectonic activity controlled the formation of the sedimentary deep depression and the migration of the sedimentary trough center, which migrated from east to west and then south from the Eocene to the Oligocene, leading to the sedimentary migration of good muddy source rocks. There are multiple sedimentary facies in favor of source rocks, including lacustrine facies, shallow marine facies, and delta plain swamps. The paleoenvironment indicates that the paleoclimate transitioned from warm and humid to cold and arid, the redox conditions evolved from semi-reducing to oxic, and paleoproductivity increased from the early to late Oligocene. Therefore, the early Oligocene was more conducive to the enrichment of organic matter. It is speculated that the warm and humid paleoclimate, reducing environment, and high paleoproductivity of the Eocene promoted the sedimentation and preservation of more organic matter. The above studies show that the northern Yinggehai Basin, especially the sedimentary period of the Eocene and Oligocene, has favorable geological conditions for the development of effective source rocks. The sedimentary models for Eocene lacustrine mudstones and Oligocene marine mudstones and marine–continental transitional coal-measure source rocks were established. These studies make up for the serious deficiency of previous research and mean that there is great exploration potential for oil and gas in the northern Yinggehai Basin in China. Full article
Show Figures

Figure 1

17 pages, 5949 KiB  
Article
The Depositional Environment of the Lacustrine Source Rocks in the Eocene Middle Number of the Liushagang Formation of the Weixinan Sag, Beibuwan Basin, China: Implications from Organic Geochemical Analyses
by Xiaoyong Yang, Xiaoxia Lv, Yahao Huang, Yunlong He, Rui Yang, Ruyue Wang and Peng Peng
Minerals 2023, 13(4), 575; https://doi.org/10.3390/min13040575 - 20 Apr 2023
Cited by 3 | Viewed by 2016
Abstract
The Eocene middle number of the Liushagang Formation (LS2) of the Weixinan Sag, Beibuwan Basin, characterized by a thick succession of excellent quality source rocks, is composed of lacustrine organic-rich shales, mudstones, and shales (mudstones/shales). However, the complex and specific depositional environment in [...] Read more.
The Eocene middle number of the Liushagang Formation (LS2) of the Weixinan Sag, Beibuwan Basin, characterized by a thick succession of excellent quality source rocks, is composed of lacustrine organic-rich shales, mudstones, and shales (mudstones/shales). However, the complex and specific depositional environment in the source rocks of LS2 raise questions about the mainly controlling factors of lacustrine organic matter (OM) accumulation. In this study, total organic carbon (TOC) contents, Rock-Eval pyrolysis, as well as biomarker data are used to investigate the nature of the depositional environment and the enrichment mechanism of OM in the source rocks of LS2. The values of Tmax, CPI, C29 steranes αββ/(ααα+αββ), and the 22S/(22S+22R) ratios of the 17α, 21β(H)-C31 hopane together confirm that the OM in the source rocks of LS2 is immature to of low maturity, which suggests that the nature of biomarkers may not be affected by thermal maturity. The hydrocarbon potential was higher in the organic-rich shales (with a mean of 20.99 mg/g) than in the mudstones/shales (with a mean of 7.10 mg/g). The OM in organic-rich shales is type I and II kerogen and that in mudstones/shales is type II kerogen. The C27/C29 regular steranes ratios and 4-methylsterane indices (4MSI) further confirmed the difference in the source of OM between organic-rich shales and mudstones/shales; that is, that the OM of organic-rich shales is mainly derived from the lake algae and aquatic macrophytes and the OM of mudstones/shales is mainly from the higher plants. The values of the gammacerane index and ratios of C21/C23 TT and C24 Tet/C26 TT all indicate that the source rocks from LS2 are deposited in freshwater to a low salinity water column. Moreover, a cross-plot of C21–22/C27–29 sterane versus dia/reg C27 sterane ratios and Pr/Ph ratios suggests that the source rocks from LS2 are recorded to have sub-oxic to oxic conditions. Based on those analyses, two dynamical formation models were proposed: a high-productivity and oxic-suboxic dynamical formation model (Model A) and a low-productivity and oxic-suboxic dynamical formation model (Model B). Full article
Show Figures

Figure 1

29 pages, 23056 KiB  
Article
Sedimentary Facies Analysis of the Third Eocene Member of Shahejie Formation in the Bonan Sag of Bohai Bay Basin (China): Implications for Facies Heterogeneities in Sandstone Reservoirs
by Nadir Fawad, Taixun Liu, Daidu Fan and Qazi Adnan Ahmad
Energies 2022, 15(17), 6168; https://doi.org/10.3390/en15176168 - 25 Aug 2022
Cited by 9 | Viewed by 5394
Abstract
The middle sub-member (Es3z) within the third member (Es3) of the Eocene Shahejie formation is the main source of the generation and accumulation of hydrocarbons in the lacustrine deltas of Bonan depression. Exploration and research work in different blocks is carried out separately. [...] Read more.
The middle sub-member (Es3z) within the third member (Es3) of the Eocene Shahejie formation is the main source of the generation and accumulation of hydrocarbons in the lacustrine deltas of Bonan depression. Exploration and research work in different blocks is carried out separately. Types of sedimentary facies, and their vertical and lateral evolution in Es3z are not studied in detail. To fill this knowledge gap, we did a detailed analysis of facies and lithological characteristics through integrative studies of cores, well logs and seismic data. Identification of sedimentary structures and lithology of the reservoir zone from cores are calibrated with high-quality well logs and seismic data. Depositional facies in Es3z reservoirs are identified through analysis of sedimentary structures, grain size, log’s trends and seismic sections. Es3z was deposited in the fan delta front setting where five facies associations are found, among them distributary channels consisting of MCS, CSg, PCSs, MS, RCL, WCS, PBSs, RCS and GBS lithofacies, natural levee containing DFs, and furthermore, sheet sand are associated to CBS and SSM lithofacies. GM, GGM and DGM lithofacies are related to inter-distributary deposits, whereas mouth bars consist of PLS, CS and CFS. Depositional history, flow direction of the sediments, and facies distribution are investigated through detailed facies mapping and cross-section profiling to show that the sediments were sourced from southeast to northwest. We found thicker succession of sedimentary profiles towards north and north-west directions. Belt distributary channel deposits, covering a wide range of areas, act as potential reservoirs along with mouth bar deposits, while mudstones in interdistributary channels act as a good source and seal rocks. The methodology adopted has great potential to explore the reservoirs of fan delta front in lacustrine deltas. Full article
(This article belongs to the Special Issue Hydrocarbon Accumulation Process and Mechanism)
Show Figures

Graphical abstract

Back to TopTop