Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Elephantopus carolinianus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2672 KiB  
Review
Deoxyelephantopin and Its Isomer Isodeoxyelephantopin: Anti-Cancer Natural Products with Multiple Modes of Action
by Tahir Mehmood and Chatchai Muanprasat
Molecules 2022, 27(7), 2086; https://doi.org/10.3390/molecules27072086 - 24 Mar 2022
Cited by 19 | Viewed by 3533
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures [...] Read more.
Cancer is a leading cause of morbidity and mortality worldwide. The development of cancer involves aberrations in multiple pathways, representing promising targets for anti-cancer drug discovery. Natural products are regarded as a rich source for developing anti-cancer therapies due to their unique structures and favorable pharmacology and toxicology profiles. Deoxyelephantopin and isodeoxyelephantopin, sesquiterpene lactone compounds, are major components of Elephantopus scaber and Elephantopus carolinianus, which have long been used as traditional medicines to treat multiple ailments, including liver diseases, diabetes, bronchitis, fever, diarrhea, dysentery, cancer, renal disorders, and inflammation-associated diseases. Recently, deoxyelephantopin and isodeoxyelephantopin have been extensively explored for their anti-cancer activities. This review summarizes and discusses the anti-cancer activities of deoxyelephantopin and isodeoxyelephantopin, with an emphasis on their modes of action and molecular targets. Both compounds disrupt several processes involved in cancer progression by targeting multiple signaling pathways deregulated in cancers, including cell cycle and proliferation, cell survival, autophagy, and invasion pathways. Future directions of research on these two compounds towards anti-cancer drug development are discussed. Full article
Show Figures

Figure 1

14 pages, 1832 KiB  
Review
Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways
by Tahir Mehmood, Amara Maryam, Hamed A. Ghramh, Muhammad Khan and Tonghui Ma
Molecules 2017, 22(6), 1013; https://doi.org/10.3390/molecules22061013 - 21 Jun 2017
Cited by 35 | Viewed by 7650
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and [...] Read more.
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop