Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Electron Cyclotron Resonance Ion Sources (ECRIS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1978 KiB  
Article
Producing Iron Endohedral Fullerene on Electron Cyclotron Resonance Ion Source
by Yushi Kato, Takayuki Omori, Issei Owada, Wataru Kubo, Shuhei Harisaki, Koichi Sato, Kazuki Tsuda, Takumu Maenaka, Masahiro Anan, Masayuki Muramatsu, Atsushi Kitagawa and Yoshikazu Yoshida
Crystals 2021, 11(10), 1249; https://doi.org/10.3390/cryst11101249 - 15 Oct 2021
Viewed by 2157
Abstract
An electron cyclotron resonance (ECR) ion source (ECRIS) can generate an available amount of multicharged ions, thus it is not limited for use in the field of accelerator science, but also in medical/biological fields, such as for heavy ion beam cancer treatment and [...] Read more.
An electron cyclotron resonance (ECR) ion source (ECRIS) can generate an available amount of multicharged ions, thus it is not limited for use in the field of accelerator science, but also in medical/biological fields, such as for heavy ion beam cancer treatment and ion engines. The processes of generating multicharged ions are mainly sequential collisions of a direct ionization process by electrons, and have good ion confinement characteristics. By utilizing this confinement property, we have synthesized iron-encapsulated fullerenes, which are supramolecular and can be expected to have various high functions. Fullerenes and iron ions are vaporized from pure solid materials and introduced into the ECRIS together with the support gas. We investigated conditions under which fullerene ions do not dissociate and iron ions are generated so that both can coexist. Generated ions are extracted from the ECRIS and separated by mass/charge with a dipole magnet, and detected with a Faraday cup. This measurement system is characterized by a wide dynamic range. The charge-state distribution (CSD) of ion currents was measured to investigate the optimum conditions for supramolecular synthesis. As a result, a significant spectrum suggesting the possibility of iron-encapsulated fullerenes was obtained. This paper describes the details of these experimental results. Full article
(This article belongs to the Special Issue Applications of Fullerene Material)
Show Figures

Figure 1

10 pages, 2837 KiB  
Article
Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source
by Giorgio Sebastiano Mauro, Giuseppe Torrisi, Ornella Leonardi, Angelo Pidatella, Gino Sorbello and David Mascali
Telecom 2021, 2(1), 42-51; https://doi.org/10.3390/telecom2010004 - 8 Feb 2021
Cited by 4 | Viewed by 5183
Abstract
The design of a microwave antenna sustaining a high-energy-content plasma in Electron Cyclotron Resonance Ion Sources (ECRISs) is, under many aspects, similar to the design of a conventional antenna but presenting also peculiarities because of the antenna lying in a cavity filled by [...] Read more.
The design of a microwave antenna sustaining a high-energy-content plasma in Electron Cyclotron Resonance Ion Sources (ECRISs) is, under many aspects, similar to the design of a conventional antenna but presenting also peculiarities because of the antenna lying in a cavity filled by an anisotropic plasma. The plasma chamber and microwave injection system design plays a critical role in the development of future ECRISs. In this paper, we present the numerical study of an unconventionally shaped plasma cavity, in which its geometry is inspired by the typical star-shaped ECR plasma, determined by the electrons trajectories as they move under the influence of the plasma-confining magnetic field. The cavity has been designed by using CST Studio Suite with the aim to maximize the on-axis electric field, thus increasing the wave-to-plasma absorption. As a second step, an innovative microwave injection system based on side-coupled slotted waveguides is presented. This new launching scheme allows an uniform power distribution inside the plasma cavity which could lead to an increase of ion source performances in terms of charge states and extracted currents when compared to the conventional axial microwave launch scheme. Finally, the use of both the “plasma-shaped” cavity and the microwave side coupled scheme could make the overall setup more compact. Full article
Show Figures

Figure 1

12 pages, 3577 KiB  
Article
Enhanced Physicochemical and Biological Properties of Ion-Implanted Titanium Using Electron Cyclotron Resonance Ion Sources
by Csaba Hegedűs, Chia-Che Ho, Attila Csik, Sándor Biri and Shinn-Jyh Ding
Materials 2016, 9(1), 25; https://doi.org/10.3390/ma9010025 - 4 Jan 2016
Cited by 17 | Viewed by 5959
Abstract
The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with [...] Read more.
The surface properties of metallic implants play an important role in their clinical success. Improving upon the inherent shortcomings of Ti implants, such as poor bioactivity, is imperative for achieving clinical use. In this study, we have developed a Ti implant modified with Ca or dual Ca + Si ions on the surface using an electron cyclotron resonance ion source (ECRIS). The physicochemical and biological properties of ion-implanted Ti surfaces were analyzed using various analytical techniques, such as surface analyses, potentiodynamic polarization and cell culture. Experimental results indicated that a rough morphology was observed on the Ti substrate surface modified by ECRIS plasma ions. The in vitro electrochemical measurement results also indicated that the Ca + Si ion-implanted surface had a more beneficial and desired behavior than the pristine Ti substrate. Compared to the pristine Ti substrate, all ion-implanted samples had a lower hemolysis ratio. MG63 cells cultured on the high Ca and dual Ca + Si ion-implanted surfaces revealed significantly greater cell viability in comparison to the pristine Ti substrate. In conclusion, surface modification by electron cyclotron resonance Ca and Si ion sources could be an effective method for Ti implants. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop