Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ERLLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8199 KiB  
Article
Redefining 6G Network Slicing: AI-Driven Solutions for Future Use Cases
by Robert Botez, Daniel Zinca and Virgil Dobrota
Electronics 2025, 14(2), 368; https://doi.org/10.3390/electronics14020368 - 18 Jan 2025
Cited by 6 | Viewed by 3415
Abstract
The evolution from 5G to 6G networks is driven by the need to meet the stringent requirements, i.e., ultra-reliable, low-latency, and high-throughput communication. The new services are called Further-Enhanced Mobile Broadband (feMBB), Extremely Reliable and Low-Latency Communications (ERLLCs), Ultra-Massive Machine-Type Communications (umMTCs), Massive [...] Read more.
The evolution from 5G to 6G networks is driven by the need to meet the stringent requirements, i.e., ultra-reliable, low-latency, and high-throughput communication. The new services are called Further-Enhanced Mobile Broadband (feMBB), Extremely Reliable and Low-Latency Communications (ERLLCs), Ultra-Massive Machine-Type Communications (umMTCs), Massive Ultra-Reliable Low-Latency Communications (mURLLCs), and Mobile Broadband Reliable Low-Latency Communications (MBRLLCs). Network slicing emerges as a critical enabler in 6G, providing virtualized, end-to-end network segments tailored to diverse application needs. Despite its significance, existing datasets for slice selection are limited to 5G or LTE-A contexts, lacking relevance to the enhanced requirements. In this work, we present a novel synthetic dataset tailored to 6G network slicing. By analyzing the emerging service requirements, we generated traffic parameters, including latency, packet loss, jitter, and transfer rates. Machine Learning (ML) models like Random Forest (RF), Decision Tree (DT), XGBoost, Support Vector Machine (SVM), and Feedforward Neural Network (FNN) were trained on this dataset, achieving over 99% accuracy in both slice classification and handover prediction. Our results highlight the potential of this dataset as a valuable tool for developing AI-assisted 6G network slicing mechanisms. While still in its early stages, the dataset lays a foundation for future research. As the 6G standardization advances, we aim to refine the dataset and models, ultimately enabling real-time, intelligent slicing solutions for next-generation networks. Full article
(This article belongs to the Special Issue Advances in IoT Security)
Show Figures

Figure 1

32 pages, 419 KiB  
Article
The 6G Ecosystem as Support for IoE and Private Networks: Vision, Requirements, and Challenges
by Carlos Serôdio, José Cunha, Guillermo Candela, Santiago Rodriguez, Xosé Ramón Sousa and Frederico Branco
Future Internet 2023, 15(11), 348; https://doi.org/10.3390/fi15110348 - 25 Oct 2023
Cited by 48 | Viewed by 5949
Abstract
The emergence of the sixth generation of cellular systems (6G) signals a transformative era and ecosystem for mobile communications, driven by demands from technologies like the internet of everything (IoE), V2X communications, and factory automation. To support this connectivity, mission-critical applications are emerging [...] Read more.
The emergence of the sixth generation of cellular systems (6G) signals a transformative era and ecosystem for mobile communications, driven by demands from technologies like the internet of everything (IoE), V2X communications, and factory automation. To support this connectivity, mission-critical applications are emerging with challenging network requirements. The primary goals of 6G include providing sophisticated and high-quality services, extremely reliable and further-enhanced mobile broadband (feMBB), low-latency communication (ERLLC), long-distance and high-mobility communications (LDHMC), ultra-massive machine-type communications (umMTC), extremely low-power communications (ELPC), holographic communications, and quality of experience (QoE), grounded in incorporating massive broad-bandwidth machine-type (mBBMT), mobile broad-bandwidth and low-latency (MBBLL), and massive low-latency machine-type (mLLMT) communications. In attaining its objectives, 6G faces challenges that demand inventive solutions, incorporating AI, softwarization, cloudification, virtualization, and slicing features. Technologies like network function virtualization (NFV), network slicing, and software-defined networking (SDN) play pivotal roles in this integration, which facilitates efficient resource utilization, responsive service provisioning, expanded coverage, enhanced network reliability, increased capacity, densification, heightened availability, safety, security, and reduced energy consumption. It presents innovative network infrastructure concepts, such as resource-as-a-service (RaaS) and infrastructure-as-a-service (IaaS), featuring management and service orchestration mechanisms. This includes nomadic networks, AI-aware networking strategies, and dynamic management of diverse network resources. This paper provides an in-depth survey of the wireless evolution leading to 6G networks, addressing future issues and challenges associated with 6G technology to support V2X environments considering presenting +challenges in architecture, spectrum, air interface, reliability, availability, density, flexibility, mobility, and security. Full article
(This article belongs to the Special Issue Moving towards 6G Wireless Technologies)
Back to TopTop