Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Durvillaea spp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 941 KiB  
Article
In Vitro Bioaccessibility of Edible Seaweed Proteins from the Chilean Coast and Proteins from the Novel Seaweed-Derived Mycoprotein
by Catalina Landeta-Salgado, Javiera Munizaga, María Paz González-Troncoso, Anamaría Daza-Sanchez, Irene Martínez and María Elena Lienqueo
Molecules 2025, 30(1), 165; https://doi.org/10.3390/molecules30010165 - 3 Jan 2025
Cited by 2 | Viewed by 1473
Abstract
Seaweed biomass is globally underutilized as a source of proteins despite its nutritional potential, with much of its use focused on hydrocolloid extraction. This study evaluated the nutritional quality and digestibility of protein and amino acids from two brown seaweeds (Durvillaea spp. [...] Read more.
Seaweed biomass is globally underutilized as a source of proteins despite its nutritional potential, with much of its use focused on hydrocolloid extraction. This study evaluated the nutritional quality and digestibility of protein and amino acids from two brown seaweeds (Durvillaea spp. and Macrocystis pyrifera), one green seaweed (Ulva spp.), and a novel mycoprotein derived from Durvillaea spp. through fungal fermentation. Using an in vitro gastrointestinal digestion Megazyme assay kit, protein digestibility-corrected amino acid scores (PDCAASs) and digestible indispensable amino acid scores (DIASSs) were determined. Compared with seaweeds, seaweed-derived mycoprotein presented significantly greater protein contents (~33%) and amino acid profiles (2.2 times greater than those of Durvillaea spp. and M. pyrifera), with greater digestibility (~100%) than seaweeds (<60%). The PDCAAS values were 0.37, 0.41, 0.53, and 0.89 for Ulva spp., Macrocystis pyrifera, Durvillaea spp., and mycoproteins, respectively. The DIASSs highlighted the superior nutritional quality of the mycoprotein, particularly for lysine (0.59) and histidine (0.67). SDS-PAGE revealed soluble peptides (<25 kDa) in Durvillaea spp., Macrocystis pyrifera, and mycoproteins, whereas Ulva spp. proteins exhibited limited solubility due to structural aggregation. These findings highlight the need to characterize the nutritional properties of edible seaweeds in Chile further and emphasize the importance of optimized processing techniques, such as fermentation or bioconversion, to improve the nutritional potential of seaweeds and develop high-quality food ingredients for diverse applications. Full article
(This article belongs to the Special Issue Effects of Functional Foods and Dietary Bioactives on Human Health)
Show Figures

Figure 1

14 pages, 2611 KiB  
Article
Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus Asteromyces cruciatus
by María Paz González-Troncoso, Catalina Landeta-Salgado, Javiera Munizaga, Ruth Hornedo-Ortega, María del Carmen García-Parrilla and María Elena Lienqueo
J. Fungi 2025, 11(1), 3; https://doi.org/10.3390/jof11010003 - 24 Dec 2024
Viewed by 919
Abstract
Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as Asteromyces cruciatus, are particularly promising due to their ability to produce bioactive metabolites [...] Read more.
Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as Asteromyces cruciatus, are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of A. cruciatus grown on different carbon sources: glucose, Durvillaea spp., and Macrocystis pyrifera. Crude extracts of fungal biomass were analyzed for total phenolic content (TPC), antioxidant capacity (TAC), toxicity, and phenolic compound identification using ultra-high-performance liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (UHPLC-MS/MS). The analysis revealed the presence of anthraquinone compounds, including emodin (0.36 ± 0.08 mg/g DW biomass) and citrereosein in glucose medium and citrereosein and endocrocin in M. pyrifera medium. No such compounds were detected in Durvillaea spp. medium. The glucose-grown extract exhibited the highest TPC (3.09 ± 0.04 mg GAE/g DW) and TAC (39.70 ± 1.0 µmol TEq/g biomass). Additionally, no detrimental effects were observed on a neuronal cell line. These findings highlight the influence of carbon sources on the production of bioactive metabolites and their functional properties, providing valuable insights into the biotechnological potential of A. cruciatus. Full article
(This article belongs to the Special Issue The Gift of Marine Fungi: Abundant Secondary Metabolites)
Show Figures

Figure 1

20 pages, 6724 KiB  
Article
Comprehensive Nutritional and Functional Characterization of Novel Mycoprotein Derived from the Bioconversion of Durvillaea spp.
by Catalina Landeta-Salgado, Nicolás Salas-Wallach, Javiera Munizaga, María Paz González-Troncoso, César Burgos-Díaz, Lhaís Araújo-Caldas, Patricia Sartorelli, Irene Martínez and María Elena Lienqueo
Foods 2024, 13(15), 2376; https://doi.org/10.3390/foods13152376 - 27 Jul 2024
Cited by 3 | Viewed by 2562
Abstract
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach [...] Read more.
This study aimed, for the first time, to determine the nutritional composition, beta-glucan and ergosterol contents, phenolic compound composition, and biological and functional activities of a novel mycoprotein produced through a bioconversion process of Durvillaea spp., a brown seaweed. An untargeted metabolomics approach was employed to screen metabolites and annotate molecules with nutraceutical properties. Two products, each representing a distinct consortia of co-cultured fungi, named Myco 1 and Myco 2, were analysed in this study. These consortia demonstrated superior properties compared to those of Durvillaea spp., showing significant increases in total protein (~238%), amino acids (~219%), and β-D-glucans (~112%). The protein contains all essential amino acids, a low fatty acid content, and exhibits high antioxidant activity (21.5–25.5 µmol TE/g). Additionally, Myco 2 exhibited the highest anti-alpha-glucosidase activity (IC50 = 16.5 mg/mL), and Myco 1 exhibited notable anti-lipase activity (IC50 = 10.5 mg/mL). Among the 69 top differentially abundant metabolites screened, 8 nutraceutical compounds were present in relatively high concentrations among the identified mycoproteins. The proteins and polysaccharides in the mycoprotein may play a crucial role in the formation and stabilization of emulsions, identifying it as a potent bioemulsifier. In conclusion, the bioconversion of Durvillaea spp. results in a mycoprotein with high-quality protein, significant nutritional and functional value, and prebiotic and nutraceutical potential due to the production of unique bioactive compounds. Full article
(This article belongs to the Topic Future Foods from the Sea)
Show Figures

Graphical abstract

20 pages, 3142 KiB  
Article
Communities and Attachment Networks Associated with Primary, Secondary and Alternative Foundation Species; A Case Study of Stressed and Disturbed Stands of Southern Bull Kelp
by Mads S. Thomsen and Paul M. South
Diversity 2019, 11(4), 56; https://doi.org/10.3390/d11040056 - 10 Apr 2019
Cited by 34 | Viewed by 6656
Abstract
Southern bull kelps (Durvillaea spp., Fucales) are ‘primary’ foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown [...] Read more.
Southern bull kelps (Durvillaea spp., Fucales) are ‘primary’ foundation species that control community structures and ecosystem functions on temperate wave-exposed rocky reefs. However, these large foundation species are threatened by disturbances and stressors, including invasive species, sedimentation and heatwaves. It is unknown whether ‘alternative’ foundation species can replace lost southern bull kelps and its associated communities and networks. We compared community structure (by quantifying abundances of different species) and attachment-interaction networks (by quantifying which species were attached to other species) among plots dominated by Durvillaea spp. and plots where Durvillaea spp. were lost either through long-term repeated experimental removals or by recent stress from a marine heatwave. Long-term experimental removal plots were dominated by ‘alternative’ foundation species, the canopy-forming Cystophora spp. (Fucales), whereas the recent heatwave stressed plots were dominated by the invasive kelp Undaria pinnatifida (Laminariales). A network analysis of attachment interactions showed that communities differed among plots dominated by either Durvillaea spp., Cystophora spp. or U. pinnatifida, with different relationships between the primary, or alternative, foundation species and attached epiphytic ‘secondary’ foundation species. For example, native Cystophora spp. were more important as hosts for secondary foundation species compared to Durvillaea spp. and U. pinnatifida. Instead, Durvillaea spp. facilitated encrusting algae, which in turn provided habitat for gastropods. We conclude that (a) repeated disturbances and strong stressors can reveal ecological differences between primary and alternative foundation species, (b) analyses of abundances and attachment-networks are supplementary methods to identify linkages between primary, alternative and secondary foundation species, and (c) interspersed habitats dominated by different types of foundation species increase system-level biodiversity by supporting different species-abundance patterns and species-attachment networks. Full article
(This article belongs to the Special Issue Diversity of Ecosystem Engineers in the World Coasts and Oceans)
Show Figures

Figure 1

Back to TopTop