Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Ditrău Alkaline Massif

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9909 KiB  
Article
Phosphate Petrochronology of the Belcina REE Mineralization (Ditrău Alkaline Massif, Romania)
by Urs Klötzli, Jolanta Burda and Paul Tibuleac
Minerals 2023, 13(6), 739; https://doi.org/10.3390/min13060739 - 30 May 2023
Cited by 6 | Viewed by 2145
Abstract
A notable REE mineralization in Europe is associated with the Ditrău Alkaline Massif (DAM) in the Eastern Carpathians (Romania). It is an expression of the latest hydrothermal phase in the DAM and is found in the form of mineralized carbonate veins cross-cutting the [...] Read more.
A notable REE mineralization in Europe is associated with the Ditrău Alkaline Massif (DAM) in the Eastern Carpathians (Romania). It is an expression of the latest hydrothermal phase in the DAM and is found in the form of mineralized carbonate veins cross-cutting the complex in the NW (Jolotca region) and the SE (Belcina region) parts of the DAM. In the Belcina veins monazite-(Ce), xenotime-(Y) and apatite, together with Fe-Mg-rich carbonate, thorite, thorogummite, gedrite and plagioclase are rock-forming. Three different textural and chemical types of the monazite-(Ce) and the xenotime-(Y) document a three-stage evolution. The relative phosphate age succession (from older to younger) thereby is xnt1 > xnt2 (>)+ mnz1 + Fe2O3 + Fe-gedrite > mnz2 + Fe-dolomite (+ plagioclase) > mnz3 + xnt3 + apatite. Phosphate chemistry shows that these crystallized from hydrothermal fluids, whereby each phosphate type follows a separate evolutionary path suggesting growth from (at least) three independent and successive hydrothermal fluids. Chemistry and pathways within the DAM suggest that these hydrothermal fluids could be derived from a subsurface carbonatitic intrusion. Mnz1,2 and xnt1,2 ages are tightly clustered at 215.8 ± 0.7 Ma (Norian, Upper Triassic). The third-generation phosphate ages are younger, but are associated with large analytical uncertainties and did not deliver geologically useful ages. The mean age of ca. 216 Ma is interpreted as the timing of the Belcina REE mineralization, which together with the fluid chemistry, supports a model of the presence of a late-stage, independent carbonatitic intrusion about 10 Ma after the main igneous activity (ca. 235–225 Ma) forming the DAM, synchronous with extension-related magmatism in the region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 7101 KiB  
Article
Petrochronological Evidence for a Three-Stage Magmatic Evolution of the Youngest Nepheline Syenites from the Ditrău Alkaline Massif, Romania
by Urs Klötzli, Jolanta Burda, Qiu-Li Li, Yu Liu, Gyula Jakab, Lucian Ionescu and Paul Tibuleac
Minerals 2022, 12(5), 657; https://doi.org/10.3390/min12050657 - 23 May 2022
Cited by 5 | Viewed by 3060
Abstract
The Ditrău Alkaline Massif (DAM) is an igneous massif in the Eastern Carpathian Mountains of Romania. Numerous geochronological and geochemical studies have proposed a long formation history (ca. 70 m.y.) of the DAM from Middle Triassic to Cretaceous times, which is hardly reconcilable [...] Read more.
The Ditrău Alkaline Massif (DAM) is an igneous massif in the Eastern Carpathian Mountains of Romania. Numerous geochronological and geochemical studies have proposed a long formation history (ca. 70 m.y.) of the DAM from Middle Triassic to Cretaceous times, which is hardly reconcilable with geochemical evolutionary models and the geotectonic environment during the Mesozoic in this part of the Eastern Carpathian Mountains. In order to put tighter age constraints on the igneous processes forming the DAM, two nepheline syenites from the so-called Ghiduţ and Lăzarea suites were investigated. Based on field and geochemical evidence, the two rock suites represent the younger part of the DAM intrusives. Detailed zircon characterization, in situ zircon SIMS U-Pb dating, and geochemical modelling were used to establish the timing of zircon crystallization and thus to set time constraints on the igneous formation of these parts of the DAM. The intrusion of the dated Ghiduţ suite sample took place at 232 ± 1 Ma in the Karnium, whereas the Lăzarea suite nepheline syenite sample was intruded at 225 ± 1 Ma in the Norium. Together with published geochemical and geochronological data, three different magmatic events can thus be identified: Ghiduţ suite at 231.1 ± 0.8 Ma, Ditrău suite at 230.7 ± 0.2 Ma, and Lăzarea suite at 224.9 ± 1.1 Ma. Although the ages of the events 1 and 2 are statistically indistinguishable, the combination of geochemical and petrochronological data certainly favor independent intrusion events. Thus, the igneous events forming the younger parts of the DAM encompassed a time span of ca. 13 m.y. Additionally, each igneous event can tentatively be divided in an older syenitic stage and a younger nepheline syenitic one, each with an age difference of some 100,000 years. No indication of any post 215 Ma igneous or hydrothermal activity was found. The new data and interpretation significantly improve our understanding of the temporal and geochemical evolution of the DAM and of alkaline complexes as such, demonstrating that the underlying igneous processes (melt generation, assimilation, fractionation, and the duration of plumbing systems) work on the same time scale for both sorts of magmatic rock suites. Full article
Show Figures

Graphical abstract

Back to TopTop