Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Diacronema vlkianum supplementation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 826 KiB  
Article
Evaluation of Marine Microalga Diacronema vlkianum Biomass Fatty Acid Assimilation in Wistar Rats
by Cristina De Mello-Sampayo, Angela Paterna, Ambra Polizzi, Diana Duarte, Irineu Batista, Rui Pinto, Patrícia Gonçalves, Anabela Raymundo, Ana P. Batista, Luísa Gouveia, Beatriz Silva-Lima and Narcisa M. Bandarra
Molecules 2017, 22(7), 1097; https://doi.org/10.3390/molecules22071097 - 1 Jul 2017
Cited by 14 | Viewed by 5282
Abstract
Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order [...] Read more.
Diacronema vlkianum is a marine microalgae for which supposed health promoting effects have been claimed based on its phytochemical composition. The potential use of its biomass as health ingredient, including detox-shakes, and the lack of bioavailability studies were the main concerns. In order to evaluate the microalgae-biomass assimilation and its health-benefits, single-dose (CD1-mice) studies were followed by 66-days repeated-dose study in Wistar rats with the highest tested single-dose of microalgae equivalent to 101 mg/kg eicosapentaenoic acid + docosahexaenoic acid (EPA+DHA). Microalgae-supplementation modulated EPA and docosapentaenoic acid enrichment at arachidonic acid content expenditure in erythrocytes and liver, while increasing EPA content of heart and adipose tissues of rats. Those fatty acid (FA) changes confirmed the D. vlkianum-biomass FA assimilation. The principal component analyses discriminated brain from other tissues, which formed two other groups (erythrocytes, liver, and heart separated from kidney and adipose tissues), pointing to a distinct signature of FA deposition for the brain and for the other organs. The improved serum lipid profile, omega-3 index and erythrocyte plasticity support the cardiovascular benefits of D. vlkianum. These results bolster the potential of D. vlkianum-biomass to become a “heart-healthy” food supplement providing a safe and renewable source of bioavailable omega-3 FA. Full article
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
Show Figures

Graphical abstract

Back to TopTop