Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = DenseHHO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2302 KiB  
Article
Triple-Stream Deep Feature Selection with Metaheuristic Optimization and Machine Learning for Multi-Stage Hypertensive Retinopathy Diagnosis
by Süleyman Burçin Şüyun, Mustafa Yurdakul, Şakir Taşdemir and Serkan Biliş
Appl. Sci. 2025, 15(12), 6485; https://doi.org/10.3390/app15126485 - 9 Jun 2025
Viewed by 375
Abstract
Hypertensive retinopathy (HR) is a serious eye disease that can lead to permanent vision loss if not diagnosed early. The conventional diagnostic methods are subjective and time-consuming, so there is a need for an automated and reliable system. In this study, a three-stage [...] Read more.
Hypertensive retinopathy (HR) is a serious eye disease that can lead to permanent vision loss if not diagnosed early. The conventional diagnostic methods are subjective and time-consuming, so there is a need for an automated and reliable system. In this study, a three-stage method that provides high accuracy in HR diagnosis is proposed. In the first stage, 14 well-known Convolutional Neural Network (CNN) models were evaluated, and the top three models were identified. Among these models, DenseNet169 achieved the highest accuracy rate of 87.73%. In the second stage, the deep features obtained from these three models were combined and classified using machine learning (ML) algorithms including Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The SVM with a sigmoid kernel achieved the best performance (92% accuracy). In the third stage, feature selection was performed using metaheuristic optimization techniques including Genetic Algorithm (GA), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), and Harris Hawk Optimization (HHO). The HHO algorithm increased the classification accuracy to 94.66%, enhancing the model’s generalization ability and reducing misclassifications. The proposed method provides superior accuracy in the diagnosis of HR at different severity levels compared to single-model CNN approaches. These results demonstrate that the integration of Deep Learning (DL), ML, and optimization techniques holds significant potential in automated HR diagnosis. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

34 pages, 8806 KiB  
Article
Multi-Target Firefighting Task Planning Strategy for Multiple UAVs Under Dynamic Forest Fire Environment
by Pei Zhu, Shize Jiang, Jiangao Zhang, Ziheng Xu, Zhi Sun and Quan Shao
Fire 2025, 8(2), 61; https://doi.org/10.3390/fire8020061 - 2 Feb 2025
Viewed by 1481
Abstract
The frequent occurrence of forest fires in mountainous regions has posed severe threats to both the ecological environment and human activities. This study proposed a multi-target firefighting task planning method of forest fires by multiple UAVs (Unmanned Aerial Vehicles) integrating task allocation and [...] Read more.
The frequent occurrence of forest fires in mountainous regions has posed severe threats to both the ecological environment and human activities. This study proposed a multi-target firefighting task planning method of forest fires by multiple UAVs (Unmanned Aerial Vehicles) integrating task allocation and path planning. The forest fire environment factors such high temperatures, dense smoke, and signal shielding zones were considered as the threats. The multi-UAVs task allocation and path planning model was established with the minimum of flight time, flight angle, altitude variance, and environmental threats. In this process, the study considers only the use of fire-extinguishing balls as the fire suppressant for the UAVs. The improved multi-population grey wolf optimization (MP–GWO) algorithm and non-Dominated sorting genetic algorithm II (NSGA-II) were designed to solve the path planning and task allocation models, respectively. Both algorithms were validated compared with traditional algorithms through simulation experiments, and the sensitivity analysis of different scenarios were conducted. Results from benchmark tests and case studies indicate that the improved MP–GWO algorithm outperforms the grey wolf optimizer (GWO), pelican optimizer (POA), Harris hawks optimizer (HHO), coyote optimizer (CPO), and particle swarm optimizer (PSO) in solving more complex optimization problems, providing better average results, greater stability, and effectively reducing flight time and path cost. At the same scenario and benchmark tests, the improved NSGA-II demonstrates advantages in both solution quality and coverage compared to the original algorithm. Sensitivity analysis revealed that with the increase in UAV speed, the flight time in the completion of firefighting mission decreases, but the average number of remaining fire-extinguishing balls per UAV initially decreases and then rises with a minimum of 1.9 at 35 km/h. The increase in UAV load capacity results in a higher average of remaining fire-extinguishing balls per UAV. For example, a 20% increase in UAV load capacity can reduce the number of UAVs from 11 to 9 to complete firefighting tasks. Additionally, as the number of fire points increases, both the required number of UAVs and the total remaining fire-extinguishing balls increase. Therefore, the results in the current study can offer an effective solution for multiple UAVs firefighting task planning in forest fire scenarios. Full article
(This article belongs to the Special Issue Firefighting Approaches and Extreme Wildfires)
Show Figures

Figure 1

20 pages, 12164 KiB  
Article
Heuristic Optimization-Based Trajectory Planning for UAV Swarms in Urban Target Strike Operations
by Chen Fei, Zhuo Lu and Weiwei Jiang
Drones 2024, 8(12), 777; https://doi.org/10.3390/drones8120777 - 20 Dec 2024
Cited by 1 | Viewed by 1266
Abstract
Unmanned aerial vehicle (UAV) swarms have shown substantial potential to enhance operational efficiency and reduce strike costs, presenting extensive applications in modern urban warfare. However, achieving effective strike performance in complex urban environments remains challenging, particularly when considering three-dimensional obstacles and threat zones [...] Read more.
Unmanned aerial vehicle (UAV) swarms have shown substantial potential to enhance operational efficiency and reduce strike costs, presenting extensive applications in modern urban warfare. However, achieving effective strike performance in complex urban environments remains challenging, particularly when considering three-dimensional obstacles and threat zones simultaneously, which can significantly degrade strike effectiveness. To address this challenge, this paper proposes a target strike strategy using the Electric Eel Foraging Optimization (EEFO) algorithm, a heuristic optimization method designed to ensure precise strikes in complex environments. The problem is formulated with specific constraints, modeling each UAV as an electric eel with random initial positions and velocities. This algorithm simulates the interaction, resting, hunting, and migrating behaviors of electric eels during their foraging process. During the interaction phase, UAVs engage in global exploration through communication and environmental sensing. The resting phase allows UAVs to temporarily hold their positions, preventing premature convergence to local optima. In the hunting phase, the swarm identifies and pursues optimal paths, while in the migration phase the UAVs transition to target areas, avoiding threats and obstacles while seeking safer routes. The algorithm enhances overall optimization capabilities by sharing information among surrounding individuals and promoting group cooperation, effectively planning flight paths and avoiding obstacles for precise strikes. The MATLAB(R2024b) simulation platform is used to compare the performance of five optimization algorithms—SO, SCA, WOA, MFO, and HHO—against the proposed Electric Eel Foraging Optimization (EEFO) algorithm for UAV swarm target strike missions. The experimental results demonstrate that in a sparse undefended environment, EEFO outperforms the other algorithms in terms of trajectory planning efficiency, stability, and minimal trajectory costs while also exhibiting faster convergence rates. In densely defended environments, EEFO not only achieves the optimal target strike trajectory but also shows superior performance in terms of convergence trends and trajectory cost reduction, along with the highest mission completion rate. These results highlight the effectiveness of EEFO in both sparse and complex defended scenarios, making it a promising approach for UAV swarm operations in dynamic urban environments. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

19 pages, 2599 KiB  
Article
A Metaheuristic Harris Hawks Optimization Algorithm for Weed Detection Using Drone Images
by Fathimathul Rajeena P.P., Walaa N. Ismail and Mona A. S. Ali
Appl. Sci. 2023, 13(12), 7083; https://doi.org/10.3390/app13127083 - 13 Jun 2023
Cited by 14 | Viewed by 2724
Abstract
There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results [...] Read more.
There are several major threats to crop production. As herbicide use has become overly reliant on weed control, herbicide-resistant weeds have evolved and pose an increasing threat to the environment, food safety, and human health. Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of images for the identification of weeds from crop images that are captured by drones. Manually designing such neural architectures is, however, an error-prone and time-consuming process. Natural-inspired optimization algorithms have been widely used to design and optimize neural networks, since they can perform a blackbox optimization process without explicitly formulating mathematical formulations or providing gradient information to develop appropriate representations and search paradigms for solutions. Harris Hawk Optimization algorithms (HHO) have been developed in recent years to identify optimal or near-optimal solutions to difficult problems automatically, thus overcoming the limitations of human judgment. A new automated architecture based on DenseNet-121 and DenseNet-201 models is presented in this study, which is called “DenseHHO”. A novel CNN architecture design is devised to classify weed images captured by sprayer drones using the Harris Hawk Optimization algorithm (HHO) by selecting the most appropriate parameters. Based on the results of this study, the proposed method is capable of detecting weeds in unstructured field environments with an average accuracy of 98.44% using DenseNet-121 and 97.91% using DenseNet-201, the highest accuracy among optimization-based weed-detection strategies. Full article
(This article belongs to the Special Issue New Development in Smart Farming for Sustainable Agriculture)
Show Figures

Figure 1

30 pages, 7315 KiB  
Article
Automated Detection and Classification of Meningioma Tumor from MR Images Using Sea Lion Optimization and Deep Learning Models
by Aswathy Sukumaran and Ajith Abraham
Axioms 2022, 11(1), 15; https://doi.org/10.3390/axioms11010015 - 30 Dec 2021
Cited by 13 | Viewed by 3109
Abstract
Meningiomas are the most prevalent benign intracranial life-threatening brain tumors, with a life expectancy of a few months in the later stages, so this type of tumor in the brain image should be recognized and detected efficiently. The source of meningiomas is unknown. [...] Read more.
Meningiomas are the most prevalent benign intracranial life-threatening brain tumors, with a life expectancy of a few months in the later stages, so this type of tumor in the brain image should be recognized and detected efficiently. The source of meningiomas is unknown. Radiation exposure, particularly during childhood, is the sole recognized environmental risk factor for meningiomas. The imaging technique of magnetic resonance imaging (MRI) is commonly used to detect most tumor forms as it is a non-invasive and painless method. This study introduces a CNN-HHO integrated automated identification model, which makes use of SeaLion optimization methods for improving overall network optimization. In addition to these techniques, various CNN models such as Resnet, VGG, and DenseNet have been utilized to give an overall influence of CNN with SeaLion in each methodology. Each model is tested on our benchmark dataset for accuracy, specificity, dice coefficient, MCC, and sensitivity, with DenseNet outperforming the other models with a precision of 98%. The proposed methods outperform existing alternatives in the detection of brain tumors, according to the existing experimental findings. Full article
Show Figures

Figure 1

Back to TopTop