Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Dendrobium thyrsiflorum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6174 KiB  
Article
Dynamic Pollen–Stigma Coordination in Dendrobium Hybridization: A Strategy to Maximize Fruit Set and Hybrid Seed Viability
by Qian Wu, Yanbing Qian, Ao Guan, Yan Yue, Zongyan Li, Bruce Dunn, Jianwei Yang, Shuangshuang Yi, Yi Liao and Junmei Yin
Horticulturae 2025, 11(5), 544; https://doi.org/10.3390/horticulturae11050544 - 17 May 2025
Viewed by 545
Abstract
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging [...] Read more.
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging papillae), histochemical benzidine-H2O2 staining, and enzymatic activity profiling (esterase and superoxide dismutase). Concurrently, pollen viability was assessed through TTC testing coupled with ultrastructural observations. Results identified a critical synchronization window: pollen viability peaked at 1–3 days post anthesis (DPA) or during the mid-anthesis phase, while stigmas exhibited maximal receptivity when secretory activity and antioxidant enzyme levels significantly increased. Using stage-specific pollination criteria, 8.4% of crosses (8/95) produced viable fruits, outperforming empirical methods by 2.8-fold. D. ‘Burana Jade’ showed cross-compatibility with four Dendrobium species (D. aphyllum, D. chrysotoxum, D. hercoglossum, D. thyrsiflorum), with D. thyrsiflorum hybrids achieving 54.81% embryogenesis and 22.38% germination. Three compatible combinations germinated successfully in vitro within 45–55 days on 1/4 MS medium supplemented with 20 g/L sucrose, 1 g/L tryptone, 180 mL/L coconut water, and 2.2 g/L Phytagel. Our findings establish that synchronizing pollen viability windows with stigma receptivity phases significantly enhances fruit set and hybrid seed viability, providing a phenology-driven strategy to overcome reproductive barriers in orchid breeding programs. This study provides key physiological criteria for Dendrobium hybridization, though their applicability to other orchids needs validation. Future multi-omics studies should explore cross-species compatibility mechanisms. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

14 pages, 4338 KiB  
Article
Secondary Metabolomic Analysis and In Vitro Bioactivity Evaluation of Stems Provide a Comprehensive Comparison between Dendrobium chrysotoxum and Dendrobium thyrsiflorum
by Lihang Xie, Jinyong Huang, Tingjian Xiong and Yao Ma
Molecules 2023, 28(16), 6039; https://doi.org/10.3390/molecules28166039 - 13 Aug 2023
Cited by 1 | Viewed by 1875
Abstract
The stems of Dendrobium chrysotoxum (DC) are commonly used as health-promoting foods due to their excellent biological activities. However, the stems of D. thyrsiflorum (DT) are often used to meet the scarcity of DC in production because of their highly similar morphology. However, [...] Read more.
The stems of Dendrobium chrysotoxum (DC) are commonly used as health-promoting foods due to their excellent biological activities. However, the stems of D. thyrsiflorum (DT) are often used to meet the scarcity of DC in production because of their highly similar morphology. However, the related metabolomic and bioactive information on the stems of DC and DT are largely deficient. Here, secondary metabolites of DC and DT stems were identified using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry, and their health-promoting functions were evaluated using several in vitro arrays. A total of 490 metabolites were identified in two stems, and 274 were significantly different. We screened out 10 key metabolites to discriminate the two species, and 36 metabolites were determined as health-promoting constituents. In summary, DT stems with higher extract yield, higher total phenolics and flavonoids, and stronger in vitro antioxidant activities demonstrated considerable potential in food and health fields. Full article
Show Figures

Figure 1

Back to TopTop