Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Dehydrodipeptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8553 KiB  
Article
Tripeptides Featuring Dehydrophenylalanine and Homophenylalanine: Homo- Versus Hetero-Chirality and Sequence Effects on Self-Assembly and Gelation
by André F. Carvalho, Teresa Pereira, Carlos Oliveira, Pedro Figueiredo, Alexandra Carvalho, David M. Pereira, Loic Hilliou, Manuel Bañobre-López, Bing Xu, Paula M. T. Ferreira and José A. Martins
Gels 2025, 11(3), 164; https://doi.org/10.3390/gels11030164 - 24 Feb 2025
Viewed by 1106
Abstract
Over the years, our research group developed dehydrodipeptides N-capped with aromatic moieties as protease-resistant efficacious hydrogelators, affording self-assembled hydrogels at low (critical) concentrations. Dehydrotripeptides, with different dipeptide sequences and (D,L) stereochemistry, open a wider chemical space for the [...] Read more.
Over the years, our research group developed dehydrodipeptides N-capped with aromatic moieties as protease-resistant efficacious hydrogelators, affording self-assembled hydrogels at low (critical) concentrations. Dehydrotripeptides, with different dipeptide sequences and (D,L) stereochemistry, open a wider chemical space for the development of self-assembled soft nanomaterials. In this work, a small library of N-succinylated dehydrotripeptides containing a C-terminal dehydrophenylalanine (∆Phe) residue and a scrambled dipeptide sequence with phenylalanine (Phe) and homophenylalanine (Hph) (L-Phe-L,D-Hph and L,D-Hph-L-Phe) was synthesized and characterized as a potential hydrogelator. Two pairs of diastereomeric tripeptides were synthesized, both as C-protected methyl esters and as deprotected dicarboxylic acids. Peptides with the sequence Hph-Phe-ΔPhe were obtained as a pair (D,L,Z)/(L,L,Z) of diastereomers. Their scrambled sequence analogues Phe-Hph-ΔPhe were obtained also as a diastereomeric (L,D,Z)/(L,L,Z) pair. The effect of stereochemistry (homo- vs. hetero-chirality) and sequence (Phe-∆Phe vs. Hph-∆Phe motif) on the self-assembly, biocompatibility, gelation and rheological properties of the hydrogels was studied in this work. Accessible, both as C-protected methyl esters and as dicarboxylic acids, N-succinylated dehydrotripeptides are interesting molecular architectures for the development of supramolecular nanomaterials. Interestingly, our results do not comply with the well-documented proposition that heterochiral peptides display much higher self-assembly propensity and gelation ability than their homochiral counterparts. Further studies will be necessary to fully understand the interplay between peptide sequence and homo- and hetero-chirality on peptide self-assembly and on the properties of their supramolecular materials. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

29 pages, 5503 KiB  
Article
Unveiling the Role of Capping Groups in Naphthalene N-Capped Dehydrodipeptide Hydrogels
by Helena Vilaça, André Carvalho, Tarsila Castro, Elisabete M. S. Castanheira, Loic Hilliou, Ian Hamley, Manuel Melle-Franco, Paula M. T. Ferreira and José A. Martins
Gels 2023, 9(6), 464; https://doi.org/10.3390/gels9060464 - 6 Jun 2023
Cited by 2 | Viewed by 2273
Abstract
Self-assembled peptide-based hydrogels are archetypical nanostructured materials with a plethora of foreseeable applications in nanomedicine and as biomaterials. N-protected di- and tri-peptides are effective minimalist (molecular) hydrogelators. Independent variation of the capping group, peptide sequence and side chain modifications allows a wide chemical [...] Read more.
Self-assembled peptide-based hydrogels are archetypical nanostructured materials with a plethora of foreseeable applications in nanomedicine and as biomaterials. N-protected di- and tri-peptides are effective minimalist (molecular) hydrogelators. Independent variation of the capping group, peptide sequence and side chain modifications allows a wide chemical space to be explored and hydrogel properties to be tuned. In this work, we report the synthesis of a focused library of dehydrodipeptides N-protected with 1-naphthoyl and 2-naphthylacetyl groups. The 2-naphthylacetyl group was extensively reported for preparation of peptide-based self-assembled hydrogels, whereas the 1-naphthaloyl group was largely overlooked, owing presumably to the lack of a methylene linker between the naphthalene aromatic ring and the peptide backbone. Interestingly, dehydrodipeptides N-capped with the 1-naphthyl moiety afford stronger gels, at lower concentrations, than the 2-naphthylacetyl-capped dehydrodipeptides. Fluorescence and circular dichroism spectroscopy showed that the self-assembly of the dehydrodipeptides is driven by intermolecular aromatic π–π stacking interactions. Molecular dynamics simulations revealed that the 1-naphthoyl group allows higher order aromatic π–π stacking of the peptide molecules than the 2-naphthylacetyl group, together with hydrogen bonding of the peptide scaffold. The nanostructure of the gel networks was studied by TEM and STEM microscopy and was found to correlate well with the elasticity of the gels. This study contributes to understanding the interplay between peptide and capping group structure on the formation of self-assembled low-molecular-weight peptide hydrogels. Moreover, the results presented here add the 1-naphthoyl group to the palette of capping groups available for the preparation of efficacious low-molecular-weight peptide-based hydrogels. Full article
(This article belongs to the Special Issue Advance in Supramolecular Gels)
Show Figures

Graphical abstract

19 pages, 5978 KiB  
Article
Aryl-Capped Lysine-Dehydroamino Acid Dipeptide Supergelators as Potential Drug Release Systems
by Carlos B. P. Oliveira, Renato B. Pereira, David M. Pereira, Loic Hilliou, Tarsila G. Castro, José A. Martins, Peter J. Jervis and Paula M. T. Ferreira
Int. J. Mol. Sci. 2022, 23(19), 11811; https://doi.org/10.3390/ijms231911811 - 5 Oct 2022
Cited by 6 | Viewed by 2534
Abstract
Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping [...] Read more.
Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping group are particularly attractive alternatives for minimalistic low molecular weight hydrogelators. Peptides with low critical gelation concentrations (CGCs) are especially desirable, as the low weight percentage required for gelation makes them more cost-effective and reduces toxicity. In this work, three dehydrodipeptides were studied for their self-assembly properties. The results showed that all three dehydrodipeptides can form self-standing hydrogels with very low critical gelation concentrations (0.05–0.20 wt%) using a pH trigger. Hydrogels of all three dehydrodipeptides were characterised by scanning tunnelling emission microscopy (STEM), rheology, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Molecular modelling was performed to probe the structural patterns and interactions. The cytotoxicity of the new compounds was tested using human keratinocytes (HaCaT cell line). In general, the results suggest that all three compounds are non-cytotoxic, although one of the peptides shows a small impact on cell viability. In sustained release assays, the effect of the charge of the model drug compounds on the rate of cargo release from the hydrogel network was evaluated. The hydrogels provide a sustained release of methyl orange (anionic) and ciprofloxacin (neutral), while methylene blue (cationic) was retained by the network. Full article
(This article belongs to the Special Issue Nanotechnology for Drug Delivery)
Show Figures

Figure 1

21 pages, 5140 KiB  
Article
Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems
by Carolina Amorim, Sérgio R. S. Veloso, Elisabete M. S. Castanheira, Loic Hilliou, Renato B. Pereira, David M. Pereira, José A. Martins, Peter J. Jervis and Paula M. T. Ferreira
Gels 2021, 7(2), 52; https://doi.org/10.3390/gels7020052 - 29 Apr 2021
Cited by 12 | Viewed by 4185
Abstract
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid [...] Read more.
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.3 wt % and 0.4 wt %, using a pH trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy, which revealed a network of entangled fibers. According to rheology, the dehydrodipeptide bolaamphiphilic hydrogelators are viscoelastic materials with an elastic modulus G′ that falls in the range of native tissue (0.37 kPa brain–4.5 kPa cartilage). In viability and proliferation studies, it was found that these compounds were non-toxic toward the human keratinocyte cell line, HaCaT. In sustained release assays, we studied the effects of the charge present on model drug compounds on the rate of cargo release from the hydrogel networks. Methylene blue (MB), methyl orange (MO), and ciprofloxacin were chosen as cationic, anionic, and overall neutral cargo, respectively. These studies have shown that the hydrogels provide a sustained release of methyl orange and ciprofloxacin, while methylene blue is retained by the hydrogel network. Full article
Show Figures

Figure 1

21 pages, 28998 KiB  
Article
Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel
by Peter J. Jervis, Loic Hilliou, Renato B. Pereira, David M. Pereira, José A. Martins and Paula M. T. Ferreira
Nanomaterials 2021, 11(3), 704; https://doi.org/10.3390/nano11030704 - 11 Mar 2021
Cited by 15 | Viewed by 3726
Abstract
Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various [...] Read more.
Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a “caged” dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand “self-delivery”, through the uncaging of known biologically active dehydrodipeptides. Full article
Show Figures

Figure 1

19 pages, 2562 KiB  
Review
Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials
by Peter J. Jervis, Carolina Amorim, Teresa Pereira, José A. Martins and Paula M. T. Ferreira
Int. J. Mol. Sci. 2021, 22(5), 2528; https://doi.org/10.3390/ijms22052528 - 3 Mar 2021
Cited by 22 | Viewed by 4298
Abstract
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue [...] Read more.
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area. Full article
(This article belongs to the Special Issue Hydrogels in Regenerative Medicine and Other Biomedical Applications)
Show Figures

Graphical abstract

1 pages, 179 KiB  
Abstract
Synthesis and Characterisation of Dimeric Bolaamphiphilic Dehydrodipeptides for Biomedical Applications
by Carolina Amorim, Peter J. Jervis, Juliana Andrade, Paula M. T. Ferreira and José A. Martins
Mater. Proc. 2021, 4(1), 35; https://doi.org/10.3390/IOCN2020-07994 - 12 Nov 2020
Viewed by 1026
Abstract
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, we syn-thesized new dimeric bolaamphiphilic dehydrodipeptides, containing phenylalanine connected to a dehydroamino acid residue at the C-terminus. [...] Read more.
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, we syn-thesized new dimeric bolaamphiphilic dehydrodipeptides, containing phenylalanine connected to a dehydroamino acid residue at the C-terminus. The N-terminus of the dipeptide was connected to both ends of a bifunctional central aromatic moiety, namely 1,4-benzenedicarboxylic acid and 1,3-benzenedicarboxylic acid. The potential use of these new compounds as hydrogelators was evaluated. The results showed that these synthesised compounds behave as efficient molecular hydrogelators, forming hydrogels with minimum gelation concentrations of 0.3–0.8 wt%. The self-assembly of these hydrogelators was investigated by the STEM microscopy technique, revealing different shapes depending on the N-aromatic moiety. STEM microscopy revealed that the hydro-gels are composed by fibers, ribbons and even spheres. Circular dichroism spectroscopy was also performed in order to evaluate the aggregation of the peptides into characteristic secondary struc-tures. Full article
(This article belongs to the Proceedings of The 2nd International Online-Conference on Nanomaterials)
25 pages, 4910 KiB  
Article
P1′ Residue-Oriented Virtual Screening for Potent and Selective Phosphinic (Dehydro) Dipeptide Inhibitors of Metallo-Aminopeptidases
by Michał Talma and Artur Mucha
Biomolecules 2020, 10(4), 659; https://doi.org/10.3390/biom10040659 - 24 Apr 2020
Cited by 11 | Viewed by 4124
Abstract
Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay [...] Read more.
Designing side chain substituents complementary to enzyme binding pockets is of great importance in the construction of potent and selective phosphinic dipeptide inhibitors of metallo-aminopeptidases. Proper structure selection makes inhibitor construction more economic, as the development process typically consists of multiple iterative preparation/bioassay steps. On the basis of these principles, using noncomplex computation and modeling methodologies, we comprehensively screened 900 commercial precursors of the P1′ residues of phosphinic dipeptide and dehydrodipeptide analogs to identify the most promising ligands of 52 metallo-dependent aminopeptidases with known crystal structures. The results revealed several nonproteinogenic residues with an improved energy of binding compared with the best known inhibitors. The data are discussed taking into account the selectivity and stereochemical implications of the enzymes. Using this approach, we were able to identify nontrivial structural elements substituting the recognized phosphinic peptidomimetic scaffold of metallo-aminopeptidase inhibitors. Full article
Show Figures

Figure 1

18 pages, 4043 KiB  
Article
Biological Evaluation of Naproxen–Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors
by Rute Moreira, Peter J. Jervis, André Carvalho, Paula M. T. Ferreira, José A. Martins, Patrícia Valentão, Paula B. Andrade and David M. Pereira
Pharmaceutics 2020, 12(2), 122; https://doi.org/10.3390/pharmaceutics12020122 - 3 Feb 2020
Cited by 22 | Viewed by 4772
Abstract
The use of peptide–drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen–dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as [...] Read more.
The use of peptide–drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen–dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen–dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing N-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) N-capped with naproxen and linked to a C-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds 4 was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions. Full article
Show Figures

Graphical abstract

16 pages, 2079 KiB  
Article
Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications
by André Carvalho, Juan Gallo, David M. Pereira, Patrícia Valentão, Paula B. Andrade, Loic Hilliou, Paula M.T. Ferreira, Manuel Bañobre-López and José A. Martins
Nanomaterials 2019, 9(4), 541; https://doi.org/10.3390/nano9040541 - 3 Apr 2019
Cited by 48 | Viewed by 5359
Abstract
Self-assembled peptide hydrogels have emerged in recent years as the new paradigm in biomaterials research. We have contributed to this field the development of hydrogels based on dehydrodipeptides N-capped with naproxen. The dehydrodipeptide hydrogels can be loaded with drugs, thus being potential [...] Read more.
Self-assembled peptide hydrogels have emerged in recent years as the new paradigm in biomaterials research. We have contributed to this field the development of hydrogels based on dehydrodipeptides N-capped with naproxen. The dehydrodipeptide hydrogels can be loaded with drugs, thus being potential nanocarriers for drug delivery. In this work novel dehydrodipeptides containing tyrosine and aspartic acid amino acid residues N-capped with naproxen and C-terminal dehydrophenylalanine were prepared and characterized. Superparamagnetic iron oxide nanoparticles (SPIONs) were incorporated into the dehydrodipeptide-based hydrogels and their effect on the self-assembly, structure and rheological and magnetic properties of the hydrogels was studied. Magnetic hydrogels, with incorporated SPIONs, displayed concentration-dependent T2-MRI contrast enhancement. Moreover, upon magnetic excitation (alternating magnetic field –AMF–) the SPIONs were able to generate a significant amount of heat. Hence, magnetic hyperthermia can be used as a remote trigger for release of drug cargos and SPIONs incorporated into the self-assembled dehydrodipeptide hydrogels. Full article
Show Figures

Figure 1

Back to TopTop