Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = DYDDH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6924 KB  
Article
A Dynamic Multi-Scale Feature Fusion Network for Enhanced SAR Ship Detection
by Rui Cao and Jianghua Sui
Sensors 2025, 25(16), 5194; https://doi.org/10.3390/s25165194 - 21 Aug 2025
Viewed by 544
Abstract
This study aims to develop an enhanced YOLO algorithm to improve the ship detection performance of synthetic aperture radar (SAR) in complex marine environments. Current SAR ship detection methods face numerous challenges in complex sea conditions, including environmental interference, false detection, and multi-scale [...] Read more.
This study aims to develop an enhanced YOLO algorithm to improve the ship detection performance of synthetic aperture radar (SAR) in complex marine environments. Current SAR ship detection methods face numerous challenges in complex sea conditions, including environmental interference, false detection, and multi-scale changes in detection targets. To address these issues, this study adopts a technical solution that combines multi-level feature fusion with a dynamic detection mechanism. First, a cross-stage partial dynamic channel transformer module (CSP_DTB) was designed, which combines the transformer architecture with a convolutional neural network to replace the last two C3k2 layers in the YOLOv11n main network, thereby enhancing the model’s feature extraction capabilities. Second, a general dynamic feature pyramid network (RepGFPN) was introduced to reconstruct the neck network architecture, enabling more efficient multi-scale feature fusion and information propagation. Additionally, a lightweight dynamic decoupled dual-alignment head (DYDDH) was constructed to enhance the collaborative performance of localization and classification tasks through task-specific feature decoupling. Experimental results show that the proposed DRGD-YOLO algorithm achieves significant performance improvements. On the HRSID dataset, the algorithm achieves an average precision (mAP50) of 93.1% at an IoU threshold of 0.50 and an mAP50–95 of 69.2% over the IoU threshold range of 0.50–0.95. Compared to the baseline YOLOv11n algorithm, the proposed method improves mAP50 and mAP50–95 by 3.3% and 4.6%, respectively. The proposed DRGD-YOLO algorithm not only significantly improves the accuracy and robustness of synthetic aperture radar (SAR) ship detection but also demonstrates broad application potential in fields such as maritime surveillance, fisheries management, and maritime safety monitoring, providing technical support for the development of intelligent marine monitoring technology. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop