Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = DHMEQ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2333 KiB  
Review
Inhibition of Cellular and Animal Inflammatory Disease Models by NF-κB Inhibitor DHMEQ
by Jun Ma, Yuyang Zhang, Takeshi Sugai, Tetsuo Kubota, Hiroshi Keino, Magdy El-Salhy, Michitaka Ozaki and Kazuo Umezawa
Cells 2021, 10(9), 2271; https://doi.org/10.3390/cells10092271 - 1 Sep 2021
Cited by 19 | Viewed by 4235
Abstract
General inflammatory diseases include skin inflammation, rheumatoid arthritis, inflammatory bowel diseases, sepsis, arteriosclerosis, and asthma. Although these diseases have been extensively studied, most of them are still difficult to treat. Meanwhile, NF-κB is a transcription factor promoting the expression of many inflammatory mediators. [...] Read more.
General inflammatory diseases include skin inflammation, rheumatoid arthritis, inflammatory bowel diseases, sepsis, arteriosclerosis, and asthma. Although these diseases have been extensively studied, most of them are still difficult to treat. Meanwhile, NF-κB is a transcription factor promoting the expression of many inflammatory mediators. NF-κB is likely to be involved in the mechanism of most inflammatory diseases. We discovered a specific NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), about 20 years ago by molecular design from a natural product. It directly binds to and inactivates NF-κB components. It has been widely used to suppress cellular and animal inflammatory disease models and was shown to be potent in vivo anti-inflammatory activity without any toxicity. We have prepared ointment of DHMEQ for the treatment of severe skin inflammation. It inhibited inflammatory cytokine expressions and lowered the clinical score in mouse models of atopic dermatitis. Intraperitoneal (IP) administration of DHMEQ ameliorated various disease models of inflammation, such as rheumatoid arthritis, sepsis, and also graft rejection. It has been suggested that inflammatory cells in the peritoneal cavity would be important for most peripheral inflammation. In the present review, we describe the synthesis, mechanism of action, and cellular and in vivo anti-inflammatory activities and discuss the clinical use of DHMEQ for inflammatory diseases. Full article
Show Figures

Figure 1

13 pages, 2633 KiB  
Review
Inhibition of Late and Early Phases of Cancer Metastasis by the NF-κB Inhibitor DHMEQ Derived from Microbial Bioactive Metabolite Epoxyquinomicin: A Review
by Yinzhi Lin, Tamami Ukaji, Naoki Koide and Kazuo Umezawa
Int. J. Mol. Sci. 2018, 19(3), 729; https://doi.org/10.3390/ijms19030729 - 3 Mar 2018
Cited by 30 | Viewed by 7911
Abstract
We previously designed and synthesized dehydroxyepoxyquinomicin (DHMEQ) as an inhibitor of NF-κB based on the structure of microbial secondary metabolite epoxyquinomicin C. DHMEQ showed anti-inflammatory and anticancer activity in various in vivo disease models without toxicity. On the other hand, the process of [...] Read more.
We previously designed and synthesized dehydroxyepoxyquinomicin (DHMEQ) as an inhibitor of NF-κB based on the structure of microbial secondary metabolite epoxyquinomicin C. DHMEQ showed anti-inflammatory and anticancer activity in various in vivo disease models without toxicity. On the other hand, the process of cancer metastasis consists of cell detachment from the primary tumor, invasion, transportation by blood or lymphatic vessels, invasion, attachment, and formation of secondary tumor. Cell detachment from the primary tumor and subsequent invasion are considered to be early phases of metastasis, while tumor cell attachment to the tissue and secondary tumor formation the late phases. The assay system for the latter phase was set up with intra-portal-vein injection of pancreatic cancer cells. Intraperitoneal administration of DHMEQ was found to inhibit liver metastasis possibly by decreasing the expression of MMP-9 and IL-8. Also, when the pancreatic cancer cells treated with DHMEQ were inoculated into the peritoneal cavity of mice, the metastatic foci formation was inhibited. These results indicate that DHMEQ is likely to inhibit the late phase of metastasis. Meanwhile, we have recently employed three-dimensional (3D) culture of breast cancer cells for the model of early phase metastasis, since the 3D invasion just includes cell detachment and invasion into the matrix. DHMEQ inhibited the 3D invasion of breast cancer cells at 3D-nontoxic concentrations. In this way, DHMEQ was shown to inhibit the late and early phases of metastasis. Thus, DHMEQ is likely to be useful for the suppression of cancer metastasis. Full article
(This article belongs to the Special Issue Natural Bioactives and Phytochemicals in Cancer Prevention)
Show Figures

Figure 1

Back to TopTop