Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = DGMOSFET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4145 KiB  
Article
Design and Analysis of Heavily Doped n+ Pocket Asymmetrical Junction-Less Double Gate MOSFET for Biomedical Applications
by Namrata Mendiratta, Suman Lata Tripathi, Sanjeevikumar Padmanaban and Eklas Hossain
Appl. Sci. 2020, 10(7), 2499; https://doi.org/10.3390/app10072499 - 5 Apr 2020
Cited by 29 | Viewed by 4233
Abstract
The Complementary Metal-Oxide Semiconductor (CMOS) technology has evolved to a great extent and is being used for different applications like environmental, biomedical, radiofrequency and switching, etc. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) based biosensors are used for detecting various enzymes, molecules, pathogens and antigens efficiently [...] Read more.
The Complementary Metal-Oxide Semiconductor (CMOS) technology has evolved to a great extent and is being used for different applications like environmental, biomedical, radiofrequency and switching, etc. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) based biosensors are used for detecting various enzymes, molecules, pathogens and antigens efficiently with a less time-consuming process involved in comparison to other options. Early-stage detection of disease is easily possible using Field-Effect Transistor (FET) based biosensors. In this paper, a steep subthreshold heavily doped n+ pocket asymmetrical junctionless MOSFET is designed for biomedical applications by introducing a nanogap cavity region at the gate-oxide interface. The nanogap cavity region is introduced in such a manner that it is sensitive to variation in biomolecules present in the cavity region. The analysis is based on dielectric modulation or changes due to variation in the bio-molecules present in the environment or the human body. The analysis of proposed asymmetrical junctionless MOSFET with nanogap cavity region is carried out with different dielectric materials and variations in cavity length and height inside the gate–oxide interface. Further, this device also showed significant variation for changes in different introduced charged particles or region materials, as simulated through a 2D visual Technology Computer-Aided Design (TCAD) device simulator. Full article
Show Figures

Figure 1

26 pages, 840 KiB  
Article
Design and Analysis of Double-Gate MOSFETs for Ultra-Low Power Radio Frequency Identification (RFID): Device and Circuit Co-Design
by Ramesh Vaddi, Rajendra P. Agarwal, Sudeb Dasgupta and Tony T. Kim
J. Low Power Electron. Appl. 2011, 1(2), 277-302; https://doi.org/10.3390/jlpea1020277 - 8 Jul 2011
Cited by 23 | Viewed by 11854
Abstract
Recently, double-gate MOSFETs (DGMOSFETs) have been shown to be more optimal for ultra-low power circuit design due to the improved subthreshold slope and the reduced leakage current compared to bulk CMOS. However, DGMOSFETs for subthreshold circuit design have not been much explored in [...] Read more.
Recently, double-gate MOSFETs (DGMOSFETs) have been shown to be more optimal for ultra-low power circuit design due to the improved subthreshold slope and the reduced leakage current compared to bulk CMOS. However, DGMOSFETs for subthreshold circuit design have not been much explored in comparison to those for strong inversion-based design. In this paper, various configurations of DGMOSFETs, such as tied/independent gates and symmetric/asymmetric gate oxide thickness are explored for ultra-low power and high efficient radio frequency identification (RFID) design. Comparison of bulk CMOS with DGMOSFETs has been conducted in ultra-low power subthreshold digital logic design and rectifier design, emphasizing the scope of the nano-scale DGMOSFET technology for future ultra-low power systems. The DGMOSFET-based subthreshold logic improves energy efficiency by more than 40% compared to the bulk CMOS-based logic at 32 nm. Among the various DGMOSFET configurations for RFID rectifiers, symmetric tied-gate DGMOSFET has the best power conversion efficiency and the lowest power consumption. Full article
(This article belongs to the Special Issue Low Power Design Methodologies and Applications)
Show Figures

Back to TopTop