Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Cunninghamella echinulate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2059 KiB  
Article
Production of a Biosurfactant by Cunninghamella echinulata Using Renewable Substrates and Its Applications in Enhanced Oil Spill Recovery
by Patrícia Mendes De Souza, Nadielly R. Andrade Silva, Daniele G. Souza, Thayse A. Lima e Silva, Marta C. Freitas-Silva, Rosileide F. S. Andrade, Grayce K. B. Silva, Clarissa D. C. Albuquerque, Arminda Saconi Messias and Galba M. Campos-Takaki
Colloids Interfaces 2018, 2(4), 63; https://doi.org/10.3390/colloids2040063 - 24 Nov 2018
Cited by 13 | Viewed by 4301
Abstract
This study aimed to evaluate the production of a surfactant by Cunninghamella echinulata, using agro-industrial residues, corn steep liquor (CSL), and soybean oil waste (SOW). The study had a factorial design, using as a variable response to the reduction of surface tension. [...] Read more.
This study aimed to evaluate the production of a surfactant by Cunninghamella echinulata, using agro-industrial residues, corn steep liquor (CSL), and soybean oil waste (SOW). The study had a factorial design, using as a variable response to the reduction of surface tension. C. echinulata was able to produce biosurfactant in assay, CSL (8.82%) and SOW (2%). The results showed that the biosurfactant was successfully produced by C. echinulata and had attractive properties, such as a low surface tension (31.7 mN/m), a yield of 5.18 g/L at 120 h of cultivation, and an anionic profile. It also achieved a reduction in surface tension stability in a wide range of pH values, temperatures, and salinity values. The biosurfactant produced by C. echinulata showed an absence of toxicity to Artemia salina. The influence of the biosurfactant on the viscosity of engine oil, burnt engine oil, diesel, soybean oil post-frying, canola oil, and water was investigated. The results reveal a mechanism for the decrease of the viscosity using hydrophobic substrates and the new biosurfactant solution at 1.5% of the (CMC). This enables the formulation of a low-cost culture medium alternative, based on corn steep liquor and the reuse of soybean oil after frying to produce a biosurfactant. Additionally, performance of the biosurfactant isolated from C. echinulata showed an excellent ability to remove spilled oil, such as diesel (98.7%) and kerosene (92.3%) from marine sand. Full article
(This article belongs to the Special Issue Biosurfactants: Trends and Applications)
Show Figures

Graphical abstract

Back to TopTop