Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Cu-TiO2 synergic effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5696 KiB  
Article
Active Brazing of Alumina and Copper with Multicomponent Ag-Cu-Sn-Zr-Ti Filler
by Sri Harini Rajendran, Seung Jun Hwang and Jae Pil Jung
Metals 2021, 11(3), 509; https://doi.org/10.3390/met11030509 - 19 Mar 2021
Cited by 15 | Viewed by 5421
Abstract
The study was designed to investigate the synergic effect of Ti and Sn in the active metal brazing of Al2O3 ceramic to copper brazed, using the multicomponent Ag-Cu-Zr filler alloy. Numerous fine and hexagonal-shaped rod-like ternary intermetallic (Zr, Ti)5 [...] Read more.
The study was designed to investigate the synergic effect of Ti and Sn in the active metal brazing of Al2O3 ceramic to copper brazed, using the multicomponent Ag-Cu-Zr filler alloy. Numerous fine and hexagonal-shaped rod-like ternary intermetallic (Zr, Ti)5Sn3 phase (L/D = 5.1 ± 0.8, measured in microns) were found dispersed in the Ag-Cu matrix of Ag-18Cu-6Sn-3Zr-1Ti alloy, along with the ternary CuZrSn intermetallic phases. An approximate 15° reduction in contact angle and 3.1 °C reduction in melting point are observed upon the incorporation of Ti and Sn in Ag-18Cu-3Zr filler. Interestingly, the interface microstructure of Al2O3/Cu joints brazed by using Ag-18Cu-6Sn-3Zr-1Ti filler shows a double reaction layer: a discontinuous Ti-rich layer consisting of (Cu, Al)3(Ti, Zr)3O, TiO, and in-situ Cu-(Ti, Zr) precipitates on the Al2O3 side and continuous Zr-rich layer consisting of ZrO2 on the filler side. The shear strength achieved in Al2O3/Cu joints brazed with Ag-18Cu-6Sn-3Zr-1Ti filler is 31% higher, compared to the joints brazed with Ag-18Cu-6Sn-3Zr filler. Failure analysis reveals a composite fracture mode indicating a strong interface bonding in Al2O3/Ag-18Cu-6Sn-3Zr-1Ti filler/Cu joints. The findings will be helpful towards the development of high entropy brazing fillers in the future. Full article
Show Figures

Figure 1

16 pages, 3914 KiB  
Article
Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion
by Ling Tang, Shan Liang, Jian-Bo Li, Dou Zhang, Wen-Bo Chen, Zhong-Jian Yang, Si Xiao and Qu-Quan Wang
Nanomaterials 2020, 10(3), 564; https://doi.org/10.3390/nano10030564 - 20 Mar 2020
Cited by 9 | Viewed by 3784
Abstract
A simple method for the controllable synthesis of Au nanocrystals–metal selenide hybrid nanostructures via amino acid guiding strategy is proposed. The results show that the symmetric overgrowth mode of PbSe shells on Au nanorods can be precisely manipulated by only adjusting the initial [...] Read more.
A simple method for the controllable synthesis of Au nanocrystals–metal selenide hybrid nanostructures via amino acid guiding strategy is proposed. The results show that the symmetric overgrowth mode of PbSe shells on Au nanorods can be precisely manipulated by only adjusting the initial concentration of Pb2+. The shape of Au–PbSe hybrids can evolve from dumbbell-like to yolk-shell. Interestingly, the plasmonic absorption enhancement could be tuned by the symmetry of these hybrid nanostructures. This provides an effective pathway for maneuvering plasmon-induced energy transfer in metal–semiconductor hybrids. In addition, the photoactivities of Au–PbSe nanorods sensitized TiO2 electrodes have been further evaluated. Owing to the synergism between effective plasmonic enhancement effect and efficient interfacial charge transfer in these hybrid nanostructures, the Au–PbSe yolk-shell nanorods exhibit an outstanding photocurrent activity. Their photocurrent density is 4.38 times larger than that of Au–PbSe dumbbell-like nanorods under light irradiation at λ > 600 nm. As a versatile method, the proposed strategy can also be employed to synthesize other metal–selenide hybrid nanostructures (such as Au–CdSe, Au–Bi2Se3 and Au–CuSe). Full article
(This article belongs to the Special Issue Nano-Hybrids: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

29 pages, 5184 KiB  
Review
Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light
by Sami Rtimi, Cesar Pulgarin and John Kiwi
Coatings 2017, 7(2), 20; https://doi.org/10.3390/coatings7020020 - 6 Feb 2017
Cited by 36 | Viewed by 8066
Abstract
This review focuses on Cu/TiO2 sequentially sputtered and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces that lead to bacterial inactivation, discussing their stability, synthesis, adhesion, and antibacterial kinetics. The intervention of TiO2, Cu, and the synergic effect of Cu and TiO2 [...] Read more.
This review focuses on Cu/TiO2 sequentially sputtered and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces that lead to bacterial inactivation, discussing their stability, synthesis, adhesion, and antibacterial kinetics. The intervention of TiO2, Cu, and the synergic effect of Cu and TiO2 on films prepared by a colloidal sol-gel method leading to bacterial inactivation is reviewed. Processes in aerobic and anaerobic media leading to bacterial loss of viability in multidrug resistant (MDR) pathogens, Gram-negative, and Gram-positive bacteria are described. Insight is provided for the interfacial charge transfer mechanism under solar irradiation occurring between TiO2 and Cu. Surface properties of 2D TiO2/Cu and TiO2-Cu films are correlated with the bacterial inactivation kinetics in dark and under light conditions. The intervention of these antibacterial sputtered surfaces in health-care facilities, leading to Methicillin-resistant Staphylococcus Aureus (MRSA)-isolates inactivation, is described in dark and under actinic light conditions. The synergic intervention of the Cu and TiO2 films leading to bacterial inactivation prepared by direct current magnetron sputtering (DCMS), pulsed direct current magnetron sputtering (DCMSP), and high power impulse magnetron sputtering (HIPIMS) is reported in a detailed manner. Full article
(This article belongs to the Special Issue Multifunctional Organic-Inorganic Hybrid Thin Films and Coatings)
Show Figures

Figure 1

Back to TopTop