Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Cu nanofoam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13284 KiB  
Article
Mechanical Properties of CuZr Amorphous Metallic Nanofoam at Various Temperatures Investigated by Molecular Dynamics Simulation
by Yuhang Zhang, Hongjian Zhou and Xiuming Liu
Materials 2025, 18(14), 3423; https://doi.org/10.3390/ma18143423 - 21 Jul 2025
Viewed by 446
Abstract
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under [...] Read more.
Metallic nanofoams with amorphous structures demonstrate exceptional properties and significant potential for diverse applications. However, their mechanical properties at different temperatures are still unclear. By using molecular dynamics simulation, this study investigates the mechanical responses of representative CuZr amorphous metallic nanofoam (AMNF) under uniaxial tension and compression at various temperatures. Our results reveal that the mechanical properties, such as Young’s modulus, yield stress, and maximum stress, exhibit notable temperature sensitivity and tension–compression asymmetry. Under tensile loading, the Young’s modulus, yield strength, and peak stress exhibit significant reductions of approximately 30.5%, 33.3%, and 32.9%, respectively, as the temperature increases from 100 K to 600 K. Similarly, under compressive loading, these mechanical properties experience even greater declines, with the Young’s modulus, yield strength, and peak stress decreasing by about 34.5%, 38.0%, and 41.7% over the same temperature range. The tension–compression asymmetry in yield strength is temperature independent. Interestingly, the tension–compression asymmetry in elastic modulus becomes more pronounced at elevated temperatures, which is attributed to the influence of surface energy effects. This phenomenon is further amplified by the increased disparity in surface-area-to-volume ratio variations between tensile and compressive loading at higher temperatures. Additionally, as the temperature rises, despite material softening, the structural resistance under large tensile strains improves due to delayed ligament degradation and more uniform deformation distribution, delaying global failure. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

2 pages, 163 KiB  
Abstract
Electrodeposited Cu Nanofoam Structures for Electrochemical CO2 Reduction
by Birutė Serapinienė, Laima Gudavičiūtė and Rimantas Ramanauskas
Proceedings 2023, 92(1), 4; https://doi.org/10.3390/proceedings2023092004 - 20 Nov 2023
Viewed by 673
Abstract
An exclusive Cu surface feature has the ability to convert CO2 into hydrocarbons with significant Faradaic efficiency [...] Full article
(This article belongs to the Proceedings of International Conference EcoBalt 2023 "Chemicals & Environment")
18 pages, 10349 KiB  
Article
Effect of Heat Treatment on the Microstructure and Performance of Cu Nanofoams Processed by Dealloying
by Jenő Gubicza, Péter Jenei, Gigap Han, Pham-Tran Hung, Youngseok Song, Dahye Park, Ábel Szabó, Csilla Kádár, Jae-Hun Kim and Heeman Choe
Materials 2021, 14(10), 2691; https://doi.org/10.3390/ma14102691 - 20 May 2021
Cited by 6 | Viewed by 2851
Abstract
Cu nanofoams are promising materials for a variety of applications, including anodes in high-performance lithium-ion batteries. The high specific surface area of these materials supports a high capacity and porous structure that helps accommodate volume expansion which occurs as batteries are charged. One [...] Read more.
Cu nanofoams are promising materials for a variety of applications, including anodes in high-performance lithium-ion batteries. The high specific surface area of these materials supports a high capacity and porous structure that helps accommodate volume expansion which occurs as batteries are charged. One of the most efficient methods to produce Cu nanofoams is the dealloying of Cu alloy precursors. This process often yields nanofoams that have low strength, thus requiring additional heat treatment to improve the mechanical properties of Cu foams. This paper provides the effects of heat treatment on the microstructures, mechanical properties, and electrochemical performance of Cu nanofoams. Annealing was conducted under both inert and oxidizing atmospheres. These studies ultimately reveal the underlying mechanisms of ligament coarsening during heat treatment. Full article
(This article belongs to the Special Issue New Advances in Characterization of Cellular Materials)
Show Figures

Figure 1

11 pages, 3480 KiB  
Article
Annealing-Induced Changes in the Microstructure and Mechanical Response of a Cu Nanofoam Processed by Dealloying
by Péter Jenei, Csilla Kádár, Gigap Han, Pham Tran Hung, Heeman Choe and Jenő Gubicza
Metals 2020, 10(9), 1128; https://doi.org/10.3390/met10091128 - 21 Aug 2020
Cited by 4 | Viewed by 3163
Abstract
Cu nanoporous foams are promising candidates for use as an anode material for advanced lithium ion batteries. In this study, Cu nanofoam was processed from pack-cemented bulk material via dealloying. In the as-processed Cu nanofoam, the average ligament size was ~105 nm. The [...] Read more.
Cu nanoporous foams are promising candidates for use as an anode material for advanced lithium ion batteries. In this study, Cu nanofoam was processed from pack-cemented bulk material via dealloying. In the as-processed Cu nanofoam, the average ligament size was ~105 nm. The hardness in this initial state was ~2 MPa, and numerous cracks were observed in the indentation pattern obtained after hardness testing, thus indicating the low mechanical strength of the material. Annealing for 6 h under an Ar atmosphere at 400 °C was shown to result in crystalline coarsening and a reduction in the probability of twin faulting in the ligaments. Simultaneously, the junctions of the ligaments became stronger and hence more difficult to crack. This study demonstrates that moderate heat treatment under Ar can improve the resistance against crack propagation in Cu nanofoam without a large change in the ligament size and the surface oxide content, which can thus influence the electrochemical performance of the material in battery applications. Full article
Show Figures

Figure 1

14 pages, 3219 KiB  
Article
Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis
by Fred J. Burpo, Enoch A. Nagelli, Lauren A. Morris, Kamil Woronowicz and Alexander N. Mitropoulos
Molecules 2018, 23(7), 1701; https://doi.org/10.3390/molecules23071701 - 12 Jul 2018
Cited by 9 | Viewed by 4692
Abstract
Multi-metallic and alloy nanomaterials enable a broad range of catalytic applications with high surface area and tuning reaction specificity through the variation of metal composition. The ability to synthesize these materials as three-dimensional nanostructures enables control of surface area, pore size and mass [...] Read more.
Multi-metallic and alloy nanomaterials enable a broad range of catalytic applications with high surface area and tuning reaction specificity through the variation of metal composition. The ability to synthesize these materials as three-dimensional nanostructures enables control of surface area, pore size and mass transfer properties, electronic conductivity, and ultimately device integration. Au-Cu nanomaterials offer tunable optical and catalytic properties at reduced material cost. The synthesis methods for Au-Cu nanostructures, especially three-dimensional materials, has been limited. Here, we present Au-Cu nanofoams and Au-Cu-Pd macrobeams synthesized from salt precursors. Salt precursors formed from the precipitation of square planar ions resulted in short- and long-range ordered crystals that, when reduced in solution, form nanofoams or macrobeams that can be dried or pressed into freestanding monoliths or films. Metal composition was determined with X-ray diffraction and energy dispersive X-ray spectroscopy. Nitrogen gas adsorption indicated an Au-Cu nanofoam specific surface area of 19.4 m2/g. Specific capacitance determined with electrochemical impedance spectroscopy was 46.0 F/g and 52.5 F/g for Au-Cu nanofoams and Au-Cu-Pd macrobeams, respectively. The use of salt precursors is envisioned as a synthesis route to numerous metal and multi-metallic nanostructures for catalytic, energy storage, and sensing applications. Full article
(This article belongs to the Special Issue Chemistry of Aerogels and Their Applications)
Show Figures

Graphical abstract

Back to TopTop