Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = CsBAK1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2378 KiB  
Article
Identification of the Transcription Factors RAP2-13 Activating the Expression of CsBAK1 in Citrus Defence Response to Xanthomonas citri subsp. citri
by Qi Wu, Mingming Zhao, Yi Li, Dazhi Li, Xianfeng Ma and Ziniu Deng
Horticulturae 2022, 8(11), 1012; https://doi.org/10.3390/horticulturae8111012 - 1 Nov 2022
Cited by 4 | Viewed by 2343
Abstract
Citrus canker is a quarantined disease caused by the bacterial plant pathogen Xanthomonas citri subsp. citri (Xcc), which causes persistent surface damage, leaf and fruit drop, and tree decline in citrus plants. The citrus cultivar Citron C-05 (Citrus medica L.) [...] Read more.
Citrus canker is a quarantined disease caused by the bacterial plant pathogen Xanthomonas citri subsp. citri (Xcc), which causes persistent surface damage, leaf and fruit drop, and tree decline in citrus plants. The citrus cultivar Citron C-05 (Citrus medica L.) is a disease-resistant genotype identified after years of screening at the National Center for Citrus Improvement (Changsha), which displays allergic, necrotic, and disease-resistant responses to Xcc. In this study, the BAK1 gene was identified in this cultivar to be a disease resistance gene involved in plant-microbe interaction between citrus and Xcc. Functional investigations of this gene revealed that both CsBAK1 (C. sinensis BAK1) or CmBAK1(C. medica BAK1) could inhibit the growth of Xcc to some extent when transiently expressed in the susceptible ‘Bingtang’ genotype of sweet orange. Critical regions of the CmBAK1 promoter sequence were identified by creating downstream deletions and exposing mutants to Xcc to determine effects on the resistance phenotype; a 426 bp region (−2000~–1574) was identified as a key functional region responsible for eliciting the hypersensitive response in plants. Through screening arrayed Citron C-05 cDNA libraries by yeast one-hybrid assays, a basic APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor of CmRAP2-13 that binds directly to the 426 bp key sequence and activates expression of CmBAK1 was identified. Moreover, transcriptional analysis revealed an obvious increase in transcript levels of CsRAP2-13 in Citron C-05, American citron, and Finger citron. In this study, we present the identification of transcriptional activators that are found to interact with BAK1 proteins in response to Xcc. These results reveal a coordinated regulatory mechanism of RAP2-13, which may be involved in defence responses through the regulation of BAK1. Full article
Show Figures

Figure 1

22 pages, 3820 KiB  
Article
Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (Cucumis sativus L.)
by Yuzheng Deng, Chunlei Wang, Meiling Zhang, Lijuan Wei and Weibiao Liao
Int. J. Mol. Sci. 2022, 23(21), 12981; https://doi.org/10.3390/ijms232112981 - 26 Oct 2022
Cited by 8 | Viewed by 2633
Abstract
Ethylene (ETH), as a key plant hormone, plays critical roles in various processes of plant growth and development. ETH has been reported to induce adventitious rooting. Moreover, our previous studies have shown that exogenous ETH may induce plant adventitious root development in cucumber [...] Read more.
Ethylene (ETH), as a key plant hormone, plays critical roles in various processes of plant growth and development. ETH has been reported to induce adventitious rooting. Moreover, our previous studies have shown that exogenous ETH may induce plant adventitious root development in cucumber (Cucumis sativus L.). However, the key genes involved in this process are still unclear. To explore the key genes in ETH-induced adventitious root development, we employed a transcriptome technique and revealed 1415 differentially expressed genes (DEGs), with 687 DEGs up-regulated and 728 DEGs down-regulated. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we further identified critical pathways that were involved in ETH-induced adventitious root development, including carbon metabolism (starch and sucrose metabolism, glycolysis/gluconeogenesis, citrate cycle (TCA cycle), oxidative phosphorylation, fatty acid biosynthesis, and fatty acid degradation), secondary metabolism (phenylalanine metabolism and flavonoid biosynthesis) and plant hormone signal transduction. In carbon metabolism, ETH reduced the content of sucrose, glucose, starch, the activity of sucrose synthase (SS), sucrose–phosphate synthase (SPS) and hexokinase (HK), and the expressions of CsHK2, pyruvate kinase2 (CsPK2), and CsCYP86A1, whereas it enhanced the expressions of β-amylase 1 (CsBAM1) and β-amylase 3 (CsBAM3). In secondary metabolism, the transcript levels of phenylalanine ammonia-lyase (CsPAL) and flavonoid 3′-monooxygenase (CsF3′M) were negatively regulated, and that of primary-amine oxidase (CsPAO) was positively regulated by ETH. Additionally, the indole-3-acetic acid (IAA) content and the expressions of auxin and ETH signaling transduction-related genes (auxin transporter-like protein 5 (CsLAX5), CsGH3.17, CsSUAR50, and CsERS) were suppressed, whereas the abscisic acid (ABA) content and the expressions of ABA and BR signaling transduction-related genes (CsPYL1, CsPYL5, CsPYL8, BRI1-associated kinase 1 (CsBAK1), and CsXTH3) were promoted by ETH. Furthermore, the mRNA levels of these genes were confirmed by real-time PCR (RT-qPCR). These results indicate that genes related to carbon metabolism, secondary metabolite biosynthesis, and plant hormone signaling transduction are involved in ETH-induced adventitious root development. This work identified the key pathways and genes in ETH-induced adventitious rooting in cucumber, which may provide new insights into ETH-induced adventitious root development and will be useful for investigating the molecular roles of key genes in this process in further studies. Full article
(This article belongs to the Special Issue Omics Study to Uncover Signalling and Gene Regulation in Plants)
Show Figures

Figure 1

14 pages, 3016 KiB  
Article
Design and Synthesis of Multi-Functional Superparamagnetic Core-Gold Shell Nanoparticles Coated with Chitosan and Folate for Targeted Antitumor Therapy
by Sharafaldin Al-Musawi, Salim Albukhaty, Hassan Al-Karagoly and Faizah Almalki
Nanomaterials 2021, 11(1), 32; https://doi.org/10.3390/nano11010032 - 24 Dec 2020
Cited by 49 | Viewed by 4454
Abstract
A dual-targeting nanomedicine composed of pH-sensitive superparamagnetic iron oxide core-gold shell SPION@Au, chitosan (CS), and folate (FA) was developed as a doxorubicin (DOX) antitumor medication. Microemulsion was used for preparation and cross-linking conjugation. The characteristics of the designed nanocomposite were studied using atomic [...] Read more.
A dual-targeting nanomedicine composed of pH-sensitive superparamagnetic iron oxide core-gold shell SPION@Au, chitosan (CS), and folate (FA) was developed as a doxorubicin (DOX) antitumor medication. Microemulsion was used for preparation and cross-linking conjugation. The characteristics of the designed nanocomposite were studied using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, UV-visible spectroscopy, Zeta potential and vibrating sample magnetometry (VSM), and Fourier transform infrared spectroscopy. The prepared SPION@Au-CS-DOX-FA nanoparticles (NPs) were spherical with an average diameter of 102.6 ± 7 nm and displayed an elevated drug loading behavior and sustained drug release capacity. The SPION@Au-CS-DOX-FA NPs revealed long term anti-cancer efficacy due to their cytotoxic effect and apoptotic inducing efficiency in SkBr3 cell lines. Additionally, Real-time PCR outcomes significantly showed an increase in BAK and BAX expression and a decrease in BCL-XL and BCL-2. In vivo results revealed that SPION@Au significantly decreased the tumor size in treated mice through magnetization. In conclusion, prepared SPION@Au-CS-DOX-FA could be a beneficial drug formulation for clinical breast cancer treatment. Full article
(This article belongs to the Special Issue Hybrid Plasmonic Nanostructures and Their Applications)
Show Figures

Graphical abstract

Back to TopTop