Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Cryobacterium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2941 KiB  
Article
Cryobacterium Inferilacus sp. nov., a Pshychrophilic Ureolitic Bacterium From Lake Untersee in Antarctica
by Yulia Yu. Berestovskaya, Tatyana P. Tourova, Denis S. Grouzdev, Natalyia V. Potekhina, Dmitry S. Kopitsyn, Nikolay V. Pimenov and Lina V. Vasilyeva
Microorganisms 2025, 13(5), 990; https://doi.org/10.3390/microorganisms13050990 - 25 Apr 2025
Viewed by 482
Abstract
The psychrophilic aerobic heterotrophic bacterium, strain 1639T, was isolated from the low-temperature Lake Untersee in Antarctica. The bacterium was Gram-positive, non-motile, yellow–green-pigmented, non-spore-forming, and a pleomorphic rod. Growth was observed at temperatures of 0–25 °C with an optimum at 10 °C. [...] Read more.
The psychrophilic aerobic heterotrophic bacterium, strain 1639T, was isolated from the low-temperature Lake Untersee in Antarctica. The bacterium was Gram-positive, non-motile, yellow–green-pigmented, non-spore-forming, and a pleomorphic rod. Growth was observed at temperatures of 0–25 °C with an optimum at 10 °C. The strain used urea as a nitrogen source. The major fatty acids were i-C16:0 (49.69%), ai-C15:0 (17.59%), and C16:1 branched (12.03%). Identified polar lipids were phosphatidylglycerols and a glycolipid. The respiratory quinone was determined to be MK-10. The genomic DNA G+C content was 68.03 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1639T was a member of the genus Cryobacterium, with the highest sequence similarity to C. arcticum SK1T (98.4%), C. soli GCJ02T (98.4%), C. lactosi Sr59T (98.3%), C. zongtaii TMN-42T (98.2%), and C. adonitolivorans RHLS22-1T (98.1%). The ANI and the DNA–DNA hybridization estimate values between strain 1639T and all type strains of species of the genus Cryobacterium were in the range of 84.3–87.8% and 20.5–40.3%, respectively. The combined genotypic and phenotypic data indicate that strain 1639T represents a novel species within the genus Cryobacterium, for which the name Cryobacterium inferilacus sp. nov. is proposed with the type strain 1639T (=KCTC 59142T, =VKM Ac-2907T, UQM 41460T). Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 3424 KiB  
Article
Organic Manure Amendment Fortifies Soil Health by Enriching Beneficial Metabolites and Microorganisms and Suppressing Plant Pathogens
by Buqing Wei, Jingjing Bi, Xueyan Qian, Chang Peng, Miaomiao Sun, Enzhao Wang, Xingyan Liu, Xian Zeng, Huaqi Feng, Alin Song and Fenliang Fan
Agronomy 2025, 15(2), 429; https://doi.org/10.3390/agronomy15020429 - 9 Feb 2025
Cited by 1 | Viewed by 1532
Abstract
Soil health reflects the sustained capacity of soil to function as a vital living ecosystem, ensuring support for all forms of life. The evaluation of soil health relies heavily on physicochemical indicators. However, it remains unclear whether and how microbial traits are related [...] Read more.
Soil health reflects the sustained capacity of soil to function as a vital living ecosystem, ensuring support for all forms of life. The evaluation of soil health relies heavily on physicochemical indicators. However, it remains unclear whether and how microbial traits are related to soil health in soil with long-term organic manure amendment. This study aims to examine how detrimental and beneficial microbial traits change with soil health based on physicochemical indicators. This research measures the effects of 9-year manure supplementation on soil health using multiomics techniques. We found that, compared to 100% chemical fertilizers, the soil health index increased by 5.2%, 19.3%, and 72.6% with 25%, 50%, and 100% organic fertilizer amendments, respectively. Correspondingly, the abundance of beneficial microorganisms, including Actinomadura, Actinoplanes, Aeromicrobium, Agromyces, Azospira, Cryobacterium, Dactylosporangium, Devosia, Hyphomicrobium, Kribbella, and Lentzea, increased progressively, while the abundance of the pathogenic fungus Fusarium decreased with the organic manure application rate. In addition, the application of organic manure significantly increased the concentrations of soil metabolites, such as sugars (raffinose, trehalose, maltose, and maltotriose) and lithocholic acid, which promoted plant growth and soil aggregation. Moreover, the abundances of pathogens and beneficial microorganisms and the concentrations of beneficial soil metabolites were significantly correlated with the soil health index based on physicochemical indicators. We conclude that organic fertilizer can enhance soil health by promoting the increase in beneficial microorganisms while suppressing detrimental microorganisms, which can serve as potential indicators for assessing soil health. In agricultural production, substituting 25–50% of chemical fertilizers with organic fertilizers significantly helps improve soil health and promotes crop growth. Full article
Show Figures

Figure 1

23 pages, 13723 KiB  
Article
Contrasting Patterns of Microbial Communities in Glacier Cryoconite of Nepali Himalaya and Greenland, Arctic
by Purnima Singh, Masaharu Tsuji, Shiv Mohan Singh and Nozomu Takeuchi
Sustainability 2020, 12(16), 6477; https://doi.org/10.3390/su12166477 - 11 Aug 2020
Cited by 3 | Viewed by 3346
Abstract
To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The [...] Read more.
To understand the microbial composition and diversity patterns, cryoconite granules were collected from two geographical areas, i.e., Nepali Himalaya and Greenland, Arctic. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of the four glaciers. The total 13 species of bacteria such as Bacillus aryabhattai, Bacillus simplex, Brevundimonas vesicularis, Cryobacterium luteum, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Glaciihabitans tibetensis, Leifsonia kafniensis, Paracoccus limosus, Polaromonas glacialis, Sporosarcina globispora, Staphylococcus saprophyticus, Variovorax ginsengisoli, and 4 species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Dothideomycetes sp., Helotiales sp. were recorded from Nepali Himalaya. Among these, 12 species of bacteria and 4 species of fungi are new contributions to Himalaya. In contrast to this, six species of bacteria such as Bacillus cereus, Cryobacterium psychrotolerans, Dermacoccus nishinomiyaensis, Enhydrobacter aerosaccus, Glaciihabitans tibetensis, Subtercola frigoramans, and nine species of fungi such as Goffeauzyma gilvescens, Mrakia robertii, Naganishia vaughanmartiniae, Piskurozyma fildesensis, Rhodotorula svalbardensis, Alatospora acuminata, Articulospora sp., Phialophora sp., Thelebolus microspores, and Dothideomycetes sp.), were recorded from Qaanaaq, Isunnguata Sermia and Thule glaciers, Greenland. Among these, five species of bacteria and seven species of fungi are new contributions to Greenland cryoconite. Microbial analyses indicate that the Nepali Himalayan cryoconite colonize higher numbers of microbial species compared to the Greenland cryoconite. Full article
(This article belongs to the Special Issue Microbial Diversity in Cold Environments and Their Sustainable Use)
Show Figures

Figure 1

Back to TopTop