Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Copper-dependent diamine oxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5488 KiB  
Article
Inhibiting Copper Amine Oxidase Using L-Aminoguanidine Induces Cultivar and Age-Dependent Alterations of Polyamine Catabolism in Tomato Seedlings
by Ágnes Szepesi, László Bakacsy, Henrietta Kovács, Árpád Szilágyi and Zoltán Márton Köhler
Agriculture 2022, 12(2), 274; https://doi.org/10.3390/agriculture12020274 - 15 Feb 2022
Cited by 5 | Viewed by 3049
Abstract
Many effects of polyamines (PAs) are well known in plant developmental processes; however, the significance of their catabolism is not well understood. Copper amine oxidase (CuAO) is involved in the degradation of diamine putrescine (Put). The genotype dependence and time-dependent effects of this [...] Read more.
Many effects of polyamines (PAs) are well known in plant developmental processes; however, the significance of their catabolism is not well understood. Copper amine oxidase (CuAO) is involved in the degradation of diamine putrescine (Put). The genotype dependence and time-dependent effects of this enzyme are rarely examined, so this study aims to discover the role of CuAO in tomato genotypes in different stages of seedling development. Exogenously applied L-aminoguanidine (AG), a CuAO inhibitor, was used to decrease the activity of CuAOs. Based on our results, it can be concluded that there is a genotype dependence of Put degradation, and AG treatment caused a long-term shift of PA catabolism by changing the activities of polyamine oxidase (PAO), catalyzing the degradation of higher PAs. Our results demonstrate that the modification of PA catabolism could have long-term results in polyamine metabolism in different tomato genotypes. Full article
Show Figures

Figure 1

44 pages, 5499 KiB  
Review
Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants
by Sebastian Schramm, Nikolai Köhler and Wilfried Rozhon
Molecules 2019, 24(3), 498; https://doi.org/10.3390/molecules24030498 - 30 Jan 2019
Cited by 155 | Viewed by 23344
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. [...] Read more.
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed. Full article
(This article belongs to the Special Issue Advances in Plant Alkaloid Research)
Show Figures

Graphical abstract

Back to TopTop