Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Congo River plume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 17222 KiB  
Article
Salinity Fronts in the South Atlantic
by Igor M. Belkin and Xin-Tang Shen
Remote Sens. 2024, 16(9), 1578; https://doi.org/10.3390/rs16091578 - 29 Apr 2024
Cited by 1 | Viewed by 2022
Abstract
Monthly climatology data for salinity fronts in the South Atlantic have been created from satellite SMOS sea surface salinity (SSS) measurements taken from 2011–2019, processed at the Barcelona Expert Center of Remote Sensing (BEC), and provided as high-resolution (1/20°) daily SSS data. The [...] Read more.
Monthly climatology data for salinity fronts in the South Atlantic have been created from satellite SMOS sea surface salinity (SSS) measurements taken from 2011–2019, processed at the Barcelona Expert Center of Remote Sensing (BEC), and provided as high-resolution (1/20°) daily SSS data. The SSS fronts have been identified with narrow zones of enhanced horizontal gradient magnitude (GM) of SSS, computed using the Belkin–O’Reilly algorithm (BOA). The SSS gradient fields generated by the BOA have been log-transformed to facilitate feature recognition. The log-transformation of SSS gradients markedly improved the visual contrast of gradient maps, which in turn allowed new features to be revealed and previously known features to be documented with a monthly temporal resolution and a mesoscale (~100 km) spatial resolution. Monthly climatologies were generated and analyzed for large-scale open-ocean SSS fronts and for low-salinity regions maintained by the Rio de la Plata discharge, Magellan Strait outflow, Congo River discharge, and Benguela Upwelling. A 2000 km-long triangular area between Africa and Brazil was found to be filled with regular quasi-meridional mesoscale striations that form a giant ripple field with a 100 km wave length. South of the Tropical Front, within the subtropical high-salinity pool, a trans-ocean quasi-zonal narrow linear belt of meridional SSS maximum (Smax) was documented. The meridional Smax belt shifts north–south seasonally while retaining its well-defined linear morphology, which is suggestive of a yet unidentified mechanism that maintains this feature. The Subtropical Frontal Zone (STFZ) consists of two tenuously connected fronts, western and eastern. The Brazil Current Front (BCF) extends SE between 40 and 45°S to join the subantarctic front (SAF). The STFZ trends NW–SE across the South Atlantic, seemingly merging with the SAF/BCF south of Africa to form a single front between 40 and 45°S. In the SW Atlantic, the Rio de la Plata plume migrates seasonally, expanding northward in winter (June–July) from 39°S into the South Brazilian Bight, up to Cabo Frio (23°S) and beyond. The inner Plata front moves in and out seasonally. Farther south, the Magellan Strait outflow expands northward in winter (June–July) from 53°S up to 39–40°S to nearly join the Plata outflow. In the SE Atlantic, the Congo River plume spreads radially from the river mouth, with the spreading direction varying seasonally. The plume is often bordered from the south by a quasi-zonal front along 6°S. The diluted Congo River water spreads southward seasonally down to the Angola–Benguela Front at 16°S. The Benguela Upwelling is delineated by a meridional front, which extends north alongshore up to 20°S, where the low-salinity Benguela Upwelling water forms a salinity front, which is separate from the thermal Angola–Benguela Front at 16°S. The high-salinity tropical water (“Angola water”) forms a wedge between the low-salinity waters of the Congo River outflow and Benguela Upwelling. This high-salinity wedge is bordered by salinity fronts that migrate north–south seasonally. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Ocean Salinity)
Show Figures

Figure 1

23 pages, 6325 KiB  
Article
Interannual Variability of the Congo River Plume-Induced Sea Surface Salinity
by Meike Sena Martins and Detlef Stammer
Remote Sens. 2022, 14(4), 1013; https://doi.org/10.3390/rs14041013 - 19 Feb 2022
Cited by 13 | Viewed by 3383
Abstract
Based on satellite surface salinity (SSS) observations from the SMOS, Aquarius and SMAP missions, we investigate the interannual SSS variability during the period from 2010 to 2020 in the Gulf of Guinea, impacted by the Congo River run-off. Combined with in situ data, [...] Read more.
Based on satellite surface salinity (SSS) observations from the SMOS, Aquarius and SMAP missions, we investigate the interannual SSS variability during the period from 2010 to 2020 in the Gulf of Guinea, impacted by the Congo River run-off. Combined with in situ data, the available 11 years of satellite salinity data suggest that the plume of Congo run-off primarily spreads into western directions, leading to reduced SSS. A fraction of it also shows a coastal southward extent subject to interannual variability influenced by coastal trapped waves. The low-salinity water is associated with high values of net primary production, confirming the riverine origin of the nutrient rich plume. No correlation can be found between the plume patterns and the different upwelling strengths in the subsequent upwelling months, nor could a correlation be found with the occurrence of the Benguela Niños. Linking the occurrence of a barrier layer to the occurrence of low-salinity plumes remains difficult, mainly because of the sparseness of in situ data. However, the influence of the low-salinity layer is evident in its stronger stratification and an increased available potential energy. Full article
Show Figures

Figure 1

20 pages, 3355 KiB  
Article
Assimilation of Satellite Salinity for Modelling the Congo River Plume
by Luke Phillipson and Ralf Toumi
Remote Sens. 2020, 12(1), 11; https://doi.org/10.3390/rs12010011 - 18 Dec 2019
Cited by 6 | Viewed by 4230
Abstract
Satellite salinity data from the Soil Moisture and Ocean Salinity (SMOS) mission was recently enhanced, increasing the spatial extent near the coast that eluded earlier versions. In a pilot attempt we assimilate this data into a coastal ocean model (ROMS) using variational assimilation [...] Read more.
Satellite salinity data from the Soil Moisture and Ocean Salinity (SMOS) mission was recently enhanced, increasing the spatial extent near the coast that eluded earlier versions. In a pilot attempt we assimilate this data into a coastal ocean model (ROMS) using variational assimilation and, for the first time, investigate the impact on the simulation of a major river plume (the Congo River). Four experiments were undertaken consisting of a control (without data assimilation) and the assimilation of either sea surface height (SSH), SMOS and the combination of both, SMOS SSH. Several metrics specific to the plume were utilised, including the area of the plume, distance to the centre of mass, orientation and average salinity. The assimilation of SMOS and combined SMOS SSH consistently produced the best results in the plume analysis. Argo float salinity profiles provided independent verification of the forecast. The SMOS or SMOS SSH forecast produced the closest agreement for Argo profiles over the whole domain (outside and inside the plume) for three of four months analysed, improving over the control and a persistence baseline. The number of samples of Argo floats determined to be inside the plume were limited. Nevertheless, for the limited plume-detected floats the largest improvements were found for the SMOS or SMOS SSH forecast for two of the four months. Full article
(This article belongs to the Special Issue Ten Years of Remote Sensing at Barcelona Expert Center)
Show Figures

Graphical abstract

Back to TopTop