Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Coalbrookdale (Shropshire)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8945 KiB  
Article
The Hay Inclined Plane in Coalbrookdale (Shropshire, England): Analysis through Computer-Aided Engineering
by José Ignacio Rojas-Sola and Eduardo De la Morena-De la Fuente
Appl. Sci. 2019, 9(16), 3385; https://doi.org/10.3390/app9163385 - 16 Aug 2019
Cited by 7 | Viewed by 3500
Abstract
This article analyzes the ‘Hay inclined plane’ designed by the English engineer and entrepreneur William Reynolds and put into operation in 1792 to facilitate the transport of vessels between channels at different levels using an inclined plane. To this end, a [...] Read more.
This article analyzes the ‘Hay inclined plane’ designed by the English engineer and entrepreneur William Reynolds and put into operation in 1792 to facilitate the transport of vessels between channels at different levels using an inclined plane. To this end, a study of computer-aided engineering (CAE) was carried out using the parametric software Autodesk Inventor Professional, consisting of a static analysis using the finite-element method (FEM) of the 3D model of the invention under real operating conditions. The results obtained after subjecting the mechanism to the two most unfavorable situations (blockage situation of the inertia flywheel and emergency braking situation) indicate that, with the exception of the braking bar, the rest of the assembly is perfectly designed and dimensioned. In particular, for the blockage situation, the point with the greatest stress is at the junction between the inertia flywheel and the axle to which it is attached, the maximum value of von Mises stress being at that point (186.9 MPa) lower than the elastic limit of the cast iron. Also, at this point the deformation is very low (0.13% of its length), as well as the maximum displacement that takes place in the inertia flywheel itself (22.98 mm), and the lowest safety factor has a value of 3.51 (located on the wooden shaft support), which indicates that the mechanism is clearly oversized. On the other hand, the emergency braking situation, which is technically impossible with a manual operation, indicates that the braking bar supports a maximum von Mises stress of 1025 MPa, above the elastic limit of the material, so it would break. However, other than that element, the rest of the elements have lower stresses, with a maximum value of 390.7 MPa, and with safety factors higher than 1.7, which indicates that the mechanism was well dimensioned. Full article
Show Figures

Figure 1

16 pages, 4383 KiB  
Article
The Hay Inclined Plane in Coalbrookdale (Shropshire, England): Geometric Modeling and Virtual Reconstruction
by José Ignacio Rojas-Sola and Eduardo De la Morena-De la Fuente
Symmetry 2019, 11(4), 589; https://doi.org/10.3390/sym11040589 - 24 Apr 2019
Cited by 19 | Viewed by 4285
Abstract
This article shows the geometric modeling and virtual reconstruction of the inclined plane of Coalbrookdale (Shropshire, England) that was in operation from 1792 to 1894. This historical invention, work of the Englishman William Reynolds, allowed the transportation of boats through channels located at [...] Read more.
This article shows the geometric modeling and virtual reconstruction of the inclined plane of Coalbrookdale (Shropshire, England) that was in operation from 1792 to 1894. This historical invention, work of the Englishman William Reynolds, allowed the transportation of boats through channels located at different levels. Autodesk Inventor Professional software has been used to obtain the 3D CAD model of this historical invention and its geometric documentation. The material for the research is available on the website of the Betancourt Project of the Canary Orotava Foundation for the History of Science. Also, because the single sheet does not have a scale, it has been necessary to adopt a graphic scale so that the dimensions of the different elements are coherent. Furthermore, it has been necessary to establish some dimensional, geometric, and movement restrictions (degrees of freedom) so that the set will work properly. One of the main conclusions is that William Reynolds designed a mechanism seeking a longitudinal symmetry so that, from a single continuous movement, the mechanism allows two vessels to ascend and descend simultaneously. This engineering solution facilitated a doubling of the working capacity of the device, as well as a reduction of the energy needs of the system. Full article
(This article belongs to the Special Issue Symmetry in Engineering Sciences)
Show Figures

Figure 1

Back to TopTop