Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Co2MnSi Heusler alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2275 KiB  
Article
Theoretical Investigations of the Structural, Dynamical, Electronic, Magnetic, and Thermoelectric Properties of CoMRhSi (M = Cr, Mn) Quaternary Heusler Alloys
by Abdullah Hzzazi, Hind Alqurashi, Eesha Andharia, Bothina Hamad and M. O. Manasreh
Crystals 2024, 14(1), 33; https://doi.org/10.3390/cryst14010033 - 27 Dec 2023
Cited by 3 | Viewed by 1904
Abstract
The structural, dynamical, electrical, magnetic, and thermoelectric properties of CoMRhSi (M = Cr, Mn) quaternary Heusler alloys (QHAs) were investigated using density functional theory (DFT). The Y-type-II crystal structure was found to be the most stable configuration for these QHAs. [...] Read more.
The structural, dynamical, electrical, magnetic, and thermoelectric properties of CoMRhSi (M = Cr, Mn) quaternary Heusler alloys (QHAs) were investigated using density functional theory (DFT). The Y-type-II crystal structure was found to be the most stable configuration for these QHAs. Both CoCrRhSi and CoMnRhSi alloys possess a half-metallic behavior with a 100% spin-polarization as the majority spin channel is metallic. On the other hand, the minority spin channel is semiconducting with narrow indirect band gaps of 0.54 eV and 0.57 eV, respectively, along the ΓX high symmetry line. In addition, both CoCrRhSi and CoMnRhSi alloys possess a ferromagnetic structure with total magnetic moments of 4 μB, and 5 μB, respectively, which are prominent for spintronics applications. The thermoelectric properties of the subject QHAs were calculated by using Boltzmann transport theory within the constant relaxation time approximation. The lattice thermal conductivities were also evaluated by Slack’s equation. The predicted values of the figure-of-merit (ZT) for CoCrRhSi and CoMnRhSi were found to be 0.84 and 2.04 at 800 K, respectively, making them ideal candidates for thermoelectric applications. Full article
Show Figures

Figure 1

13 pages, 2168 KiB  
Article
Unveiling the Magnetic and Structural Properties of (X2YZ; X = Co and Ni, Y = Fe and Mn, and Z = Si) Full-Heusler Alloy Microwires with Fixed Geometrical Parameters
by Mohamed Salaheldeen, Valentina Zhukova, Mihail Ipatov and Arcady Zhukov
Crystals 2023, 13(11), 1550; https://doi.org/10.3390/cryst13111550 - 29 Oct 2023
Cited by 10 | Viewed by 1566
Abstract
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, [...] Read more.
We studied Ni2FeSi-, Co2FeSi-, and Co2MnSi-based full-Heusler alloy glass-coated microwires with the same geometric parameters, i.e., fixed nucleus and total diameters, prepared using the Taylor–Ulitovsky method. The fabrication of X2YZ (X = Co and Ni, Y = Fe and Mn, and Z = Si)-based glass-coated microwires with fixed geometric parameters is quite challenging due to the different sample preparation conditions. The XRD analysis showed a nanocrystalline microstructure for all the samples. The space groups Fm3¯m (FCC) and Im3¯m (BCC) with disordered B2 and A2 types are observed for Ni2FeSi and Co2FeSi, respectively. Meanwhile, a well-defined, ordered L21 type was observed for Co2MnSi GCMWs. The change in the positions of Ni, Co and Mn, Fe in X2YSi resulted in a variation in the lattice cell parameters and average grain size of the sample. The room-temperature magnetic behavior showed a dramatic change depending on the chemical composition, where Ni2FeSi MWs showed the highest coercivity (Hc) compared to Co2FeSi and Co2MnSi MWs. The Hc value of Ni2FeSi MWs was 16 times higher than that of Co2MnSi MWs and 3 times higher than that of Co2FeSi MWs. Meanwhile, the highest reduced remanence was reported for Co2FeSi MWs (Mr = 0.92), being about 0.82 and 0.22 for Ni2FeSi and Co2MnSi MWs, respectively. From the analysis of the temperature dependence of the magnetic properties (Hc and Mr) of X2YZ MWs, we deduced that the Hc showed a stable tendency for Co2MnSi and Co2FeSi MWs. Meanwhile, two flipped points were observed for Ni2FeSi MWs, where the behavior of Hc changed with temperature. For Mr, a monotonic increase on decreasing the temperature was observed for Co2FeSi and Ni2FeSi MWs, and it remained roughly stable for Co2MnSi MWs. The thermomagnetic curves at low magnetic field showed irreversible magnetic behavior for Co2MnSi and Co2FeSi MWs and regular ferromagnetic behavior for Ni2FeSi MWs. The current result illustrates the ability to tailor the structure and magnetic behavior of X2YZ MWs at fixed geometric parameters. Additionally, a different behavior was revealed in X2YZ MWs depending on the degree of ordering and element distribution. The tunability of the magnetic properties of X2YZ MWs makes them suitable for sensing applications. Full article
(This article belongs to the Topic Advanced Magnetic Alloys)
Show Figures

Figure 1

16 pages, 2362 KiB  
Article
Carbon-Doped Co2MnSi Heusler Alloy Microwires with Improved Thermal Characteristics of Magnetization for Multifunctional Applications
by Mohamed Salaheldeen, Asma Wederni, Mihail Ipatov, Valentina Zhukova and Arcady Zhukov
Materials 2023, 16(15), 5333; https://doi.org/10.3390/ma16155333 - 29 Jul 2023
Cited by 11 | Viewed by 1863
Abstract
In the current work, we illustrate the effect of adding a small amount of carbon to very common Co2MnSi Heusler alloy-based glass-coated microwires. A significant change in the magnetic and structure structural properties was observed for the new alloy Co2 [...] Read more.
In the current work, we illustrate the effect of adding a small amount of carbon to very common Co2MnSi Heusler alloy-based glass-coated microwires. A significant change in the magnetic and structure structural properties was observed for the new alloy Co2MnSiC compared to the Co2MnSi alloy. Magneto-structural investigations were performed to clarify the main physical parameters, i.e., structural and magnetic parameters, at a wide range of measuring temperatures. The XRD analysis illustrated the well-defined crystalline structure with average grain size (Dg = 29.16 nm) and a uniform cubic structure with A2 type compared to the mixed L21 and B2 cubic structures for Co2MnSi-based glass-coated microwires. The magnetic behavior was investigated at a temperature range of 5 to 300 K and under an applied external magnetic field (50 Oe to 20 kOe). The thermomagnetic behavior of Co2MnSiC glass-coated microwires shows a perfectly stable behavior for a temperature range from 300 K to 5 K. By studying the field cooling (FC) and field heating (FH) magnetization curves at a wide range of applied external magnetic fields, we detected a critical magnetic field (H = 1 kOe) where FC and FH curves have a stable magnetic behavior for the Co2MnSiC sample; such stability was not found in the Co2MnSi sample. We proposed a phenomenal expression to estimate the magnetization thermal stability, ΔM (%), of FC and FH magnetization curves, and the maximum value was detected at the critical magnetic field where ΔM (%) ≈ 98%. The promising magnetic stability of Co2MnSiC glass-coated microwires with temperature is due to the changing of the microstructure induced by the addition of carbon, as the A2-type structure shows a unique stability in response to variation in the temperature and the external magnetic field. In addition, a unique internal mechanical stress was induced during the fabrication process and played a role in controlling magnetic behavior with the temperature and external magnetic field. The obtained results make Co2MnSiC a promising candidate for magnetic sensing devices based on Heusler glass-coated microwires. Full article
Show Figures

Figure 1

14 pages, 1130 KiB  
Article
Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwires
by Mohamed Salaheldeen, Mihail Ipatov, Paula Corte-Leon, Valentina Zhukova and Arcady Zhukov
Metals 2023, 13(2), 412; https://doi.org/10.3390/met13020412 - 16 Feb 2023
Cited by 19 | Viewed by 2373
Abstract
In the current study, we concentrated on the influence of annealing on the magnetic behavior of Co2MnSi-based Heusler microwires. We set the annealing temperature at 1023 K for 2 h, as the sample did not show any significant changes in the [...] Read more.
In the current study, we concentrated on the influence of annealing on the magnetic behavior of Co2MnSi-based Heusler microwires. We set the annealing temperature at 1023 K for 2 h, as the sample did not show any significant changes in the magnetic properties at lower temperatures, while annealing at temperatures above 1023 K damages the glass coating. Strong in-plane magnetocrystalline anisotropy parallel to the microwire axis was evident in the magnetic behavior at room temperature for as-prepared and annealed samples. The coercivity of the annealed sample was four times higher than that of the as-prepared sample across a wide range of measuring temperatures. Both annealed and as-prepared samples exhibit quite stable coercivity behavior with temperature, which may have interesting applications. The an nealed sample did not exhibit magnetic saturation for M-H loops measured below 50 K. Sharp irreversible magnetic behavior has been detected for annealed samples at a blocking temperature of 220 K; at the same time, the blocking temperature for the as-prepared sample was 150 K. The strong internal mechanical stress induced during the fabrication of Co2MnSi microwires in addition to the internal stress relaxation caused by the annealing induced the onset of magnetic phases resulting in unusual and irreversible magnetic behavior. Full article
Show Figures

Graphical abstract

12 pages, 3228 KiB  
Article
Preparation and Magneto-Structural Investigation of Nanocrystalline CoMn-Based Heusler Alloy Glass-Coated Microwires
by Mohamed Salaheldeen, Ahmed Talaat, Mihail Ipatov, Valentina Zhukova and Arcady Zhukov
Processes 2022, 10(11), 2248; https://doi.org/10.3390/pr10112248 - 1 Nov 2022
Cited by 20 | Viewed by 2436
Abstract
In this work, we have successfully fabricated nanocrystalline Co2MnSi Heusler alloy glass-coated microwires with a metallic nucleus diameter (dnuclei) 10.2 ± 0.1 μm and total diameter 22.2 ± 0.1 μm by the Taylor–Ulitovsky technique for the first time. Magnetic [...] Read more.
In this work, we have successfully fabricated nanocrystalline Co2MnSi Heusler alloy glass-coated microwires with a metallic nucleus diameter (dnuclei) 10.2 ± 0.1 μm and total diameter 22.2 ± 0.1 μm by the Taylor–Ulitovsky technique for the first time. Magnetic and structural investigations have been performed to clarify the basic magneto-structural properties of the Co2MnSi glass-coated microwires. XRD showed a well-defined crystalline structure with a lattice parameter a = 5.62 Å. The room temperature magnetic behavior showed a strong in-plane magnetocrystalline anisotropy parallel to the microwire axis. The M-H loops showed unique thermal stability with temperature where the coercivity (Hc) and normalized magnetic remanence exhibited roughly stable tendency with temperature. Moreover, quite soft magnetic behavior has been observed with values of coercivity of the order of Hc = 7 ± 2 Oe. Zero field cooling and field cooling (ZFC-FC) magnetization curves displayed notable irreversible magnetic dependence, where a blocking temperature (TB = 150 K) has been observed. The internal stresses generated during the fabrication process induced a different magnetic phase and is responsible for the irreversibility behavior. Moreover, high Curie temperature has been reported (Tc ≈ 985 K) with unique magnetic behavior at a wide range of temperature and magnetic fields, making it a promising candidate in magnetic sensing and spintronic applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

12 pages, 1094 KiB  
Article
Engineered Heusler Ferrimagnets with a Large Perpendicular Magnetic Anisotropy
by Reza Ranjbar, Kazuya Suzuki, Atsushi Sugihara, Terunobu Miyazaki, Yasuo Ando and Shigemi Mizukami
Materials 2015, 8(9), 6531-6542; https://doi.org/10.3390/ma8095320 - 22 Sep 2015
Cited by 6 | Viewed by 5246
Abstract
Synthetic perpendicular magnetic anisotropy (PMA) ferrimagnets consisting of 30-nm-thick D022-MnGa and Co2MnSi (CMS) cubic Heusler alloys with different thicknesses of 1, 3, 5, 10 and 20 nm, buffered and capped with a Cr film, are successfully grown epitaxially on [...] Read more.
Synthetic perpendicular magnetic anisotropy (PMA) ferrimagnets consisting of 30-nm-thick D022-MnGa and Co2MnSi (CMS) cubic Heusler alloys with different thicknesses of 1, 3, 5, 10 and 20 nm, buffered and capped with a Cr film, are successfully grown epitaxially on MgO substrate. Two series samples with and without post annealing at 400 °C are fabricated. The (002) peak of the cubic L21 structure of CMS films on the MnGa layer is observed, even for the 3-nm-thick CMS film for both un-annealed and annealed samples. The smaller remnant magnetization and larger switching field values of CMS (1–20 nm)/MnGa (30 nm) bilayers compared with 30-nm-thick MnGa indicates antiferromagnetic (AFM) interfacial exchange coupling (Jex) between MnGa and CMS films for both un-annealed and annealed samples. The critical thickness of the CMS film for observing PMA with AFM coupling in the CMS/MnGa bilayer is less than 10 nm, which is relatively large compared to previous studies. Full article
(This article belongs to the Special Issue Epitaxial Materials 2015)
Show Figures

Figure 1

10 pages, 505 KiB  
Letter
The Effect of Cobalt-Sublattice Disorder on Spin Polarisation in Co2FexMn1−xSi Heusler Alloys
by Philip J. Hasnip, Christian H. Loach, Joseph H. Smith, Matthew I. J. Probert, Daniel Gilks, James Sizeland, Leonardo Lari, James Sagar, Kenta Yoshida, Mikihiko Oogane, Atsufumi Hirohata and Vlado K. Lazarov
Materials 2014, 7(3), 1473-1482; https://doi.org/10.3390/ma7031473 - 25 Feb 2014
Cited by 9 | Viewed by 7827
Abstract
In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1−xSi (CFMS) alloys. The electronic calculations are based on density [...] Read more.
In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1−xSi (CFMS) alloys. The electronic calculations are based on density functional theory with a Hubbard U term. Chemical disorders studied consist of swapping Co with Fe/Mn and Co with Si; in all cases we found these are detrimental for spin polarisation, i.e., the spin polarisation not only decreases in magnitude, but also can change sign depending on the particular disorder. Formation energy calculation shows that Co–Si disorder has higher energies of formation in CFMS compared to Co2MnSi and Co2FeSi, with maximum values occurring for x in the range 0.5–0.75. Cross-sectional structural studies of reference Co2MnSi, Co2Fe0.5Mn0.5Si, and Co2FeSi by Z-contrast scanning transmission electron microscopy are in qualitative agreement with total energy calculations of the disordered structures. Full article
(This article belongs to the Special Issue Spintronics)
Show Figures

Back to TopTop