Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Clausena anisata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 715 KiB  
Article
Susceptibility Patterns in Staphylococcus and Klebsiella Causing Nosocomial Infections upon Treatment with E-Anethole-Rich Essential Oil from Clausena anisata
by François Nguimatsia, Evariste Josué Momo, Paul Keilah Lunga, Virginia Lum Tamanji, Boniface Pone Kamdem and Pierre Michel Jazet Dongmo
Drugs Drug Candidates 2024, 3(1), 244-255; https://doi.org/10.3390/ddc3010014 - 1 Mar 2024
Viewed by 1977
Abstract
High rates of resistance to antibiotics are associated with healthcare-related infections, thus demonstrating the urgent need for effective antimicrobials against these maladies. The present study aims to determine the chemical composition of essential oil (EO) from Clausena anisata leaves and evaluate their antibacterial [...] Read more.
High rates of resistance to antibiotics are associated with healthcare-related infections, thus demonstrating the urgent need for effective antimicrobials against these maladies. The present study aims to determine the chemical composition of essential oil (EO) from Clausena anisata leaves and evaluate their antibacterial activity against selected nosocomial bacteria. To this end, one kilogram (1 kg) of fresh leaves of C. anisata was washed and boiled with 500 mL of distilled water for 2−4 h using a Clevenger apparatus. The oil was then collected in an Erlenmeyer, dried using anhydrous sodium sulfate, bottled in a tinted glass bottle and refrigerated at 4 °C before analysis. Next, the as-prepared oil was analyzed using gas chromatography-mass spectrometry (GC-MS). The essential oil was further tested against a panel of selected nosocomial bacteria, including Staphylococcus and Klebsiella species, among others, by microdilution using a resazurin assay to determine the minimum inhibitory and minimum bactericidal concentrations (MICs and MBCs, respectively). As a result, 0.77% of EO was extracted from fresh leaves of C. anisata. The GC-MS analysis revealed that the as-prepared essential oil contained E-anethole (70.77%), methyl isoeugenol (13.85%), estragole (4.10%), γ-terpinene (3.33%), myrcene (2.82%) and sabinene (0.77%), with E-anethole being the major constituent. Twenty-two compounds were identified in the EO of C. anisata leaves through gas chromatography. Upon antibacterial testing against selected nosocomial pathogens, the E-anethole-rich essential oil exhibited MIC and MBC values ranging from 3.91 to 125 µg/mL and 7.81 to 125 µg/mL, respectively, indicative of a bactericidal orientation of the plant’s essential oil (MIC/MBC ratio < 4). This novel contribution highlights the scientific validation of the use of C. anisata leaves in the traditional treatment of various infectious diseases. However, toxicity and pharmacokinetic studies, mechanistic bases of the antibacterial action, and in vivo antibacterial experiments of the E-anethole-rich EO of C. anisata should be investigated to successfully use this plant in the treatment of infectious diseases. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Graphical abstract

16 pages, 522 KiB  
Article
Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus)
by Stephane L. Ngahang Kamte, Farahnaz Ranjbarian, Gustavo Daniel Campagnaro, Prosper C. Biapa Nya, Hélène Mbuntcha, Verlaine Woguem, Hilaire Macaire Womeni, Léon Azefack Ta, Cristiano Giordani, Luciano Barboni, Giovanni Benelli, Loredana Cappellacci, Anders Hofer, Riccardo Petrelli and Filippo Maggi
Int. J. Environ. Res. Public Health 2017, 14(7), 737; https://doi.org/10.3390/ijerph14070737 - 6 Jul 2017
Cited by 36 | Viewed by 6769
Abstract
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and [...] Read more.
Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea, and Echinops giganteus) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica, A. daniellii, and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC50) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils. Full article
Show Figures

Figure 1

14 pages, 233 KiB  
Article
Chemical Constituents from Stem Bark and Roots of Clausena anisata
by Jules Lobe Songue, Kouam, Etienne Dongo, Theophile Ngando Mpondo and Robert L. White
Molecules 2012, 17(11), 13673-13686; https://doi.org/10.3390/molecules171113673 - 20 Nov 2012
Cited by 51 | Viewed by 8756
Abstract
Phytochemical investigations on the stem bark and roots of the tropical shrub Clausena anisata led to the isolation and characterization three carbazole alkaloids: girinimbine, murrayamine-A and ekeberginine; two peptide derivatives: aurantiamide acetate and N-benzoyl-l-phenylalaninyl-N-benzoyl-l-phenylalaninate; and a mixture of two phytosterols: [...] Read more.
Phytochemical investigations on the stem bark and roots of the tropical shrub Clausena anisata led to the isolation and characterization three carbazole alkaloids: girinimbine, murrayamine-A and ekeberginine; two peptide derivatives: aurantiamide acetate and N-benzoyl-l-phenylalaninyl-N-benzoyl-l-phenylalaninate; and a mixture of two phytosterols: sitosterol and stigmasterol. The structures of these compounds were established by nuclear magnetic resonance (1H-NMR, 13C-NMR, COSY, HSQC, HMQC, HMBC and NOESY) spectroscopy and electrospray ionization mass spectrometry (MS). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop