Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Chrysopa sinica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2912 KiB  
Article
Metabolic Changes in Larvae of Predator Chrysopa sinica Fed on Azadirachtin-Treated Plutella xylostella Larvae
by Peiwen Zhang, You Zhou, Deqiang Qin, Jianjun Chen and Zhixiang Zhang
Metabolites 2022, 12(2), 158; https://doi.org/10.3390/metabo12020158 - 8 Feb 2022
Cited by 10 | Viewed by 2501
Abstract
Biological control is a key component of integrated pest management (IPM). To suppress pests in a certain threshold, chemical control is used in combination with biological and other control methods. An essential premise for using pesticides in IPM is to ascertain their compatibility [...] Read more.
Biological control is a key component of integrated pest management (IPM). To suppress pests in a certain threshold, chemical control is used in combination with biological and other control methods. An essential premise for using pesticides in IPM is to ascertain their compatibility with beneficial insects. Chrysopa sinica (Neuroptera: Chrysopidae) is an important predator of various pests and used for pest management. This study was intended to analyze metabolic changes in C. sinica larvae after feeding on azadirachtin-treated Plutella xylostella (Lepidoptera, Plutellidae) larvae through a non-targeted LC–MS (Liquid chromatography–mass spectrometry) based metabolomics analysis. Results showed that C. sinica larvae did not die after consuming P. xylostella larvae treated with azadirachtin. However, their pupation and eclosion were adversely affected, resulting in an impairment in the completion of their life cycle. Feeding C. sinica larvae with azadirachtin-treated P. xylostella larvae affected over 10,000 metabolites across more than 20 pathways, including the metabolism of amino acids, carbohydrates, lipid, cofactors, and vitamins in C. sinica larvae, of which changes in amnio acid metabolism were particularly pronounced. A working model was proposed to illustrate differential changes in 20 metabolites related to some amino acid metabolisms. Among them, 15 were markedly reduced and only five were elevated. Our results suggest that azadirachtin application may not be exclusively compatible with the use of the predator C. sinica for control of P. xylostella. It is recommended that the compatibility should be evaluated not only based on the survival of the predatory insects but also by the metabolic changes and the resultant detrimental effects on their development. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

12 pages, 2123 KiB  
Article
Low-Coverage Whole Genomes Reveal the Higher Phylogeny of Green Lacewings
by Yuyu Wang, Ruyue Zhang, Yunlong Ma, Jing Li, Fan Fan, Xingyue Liu and Ding Yang
Insects 2021, 12(10), 857; https://doi.org/10.3390/insects12100857 - 17 Sep 2021
Cited by 7 | Viewed by 2485
Abstract
Green lacewings are one of the largest families within Neuroptera and are widely distributed all over the world. Many species within this group are important natural predators that are widely used for the biological control of pests in agricultural ecosystems. Several proposed phylogenetic [...] Read more.
Green lacewings are one of the largest families within Neuroptera and are widely distributed all over the world. Many species within this group are important natural predators that are widely used for the biological control of pests in agricultural ecosystems. Several proposed phylogenetic relationships among the three subfamilies of Chrysopidae have been extensively debated. To further understand the higher phylogeny as well as the evolutionary history of Chrysopidae, we newly sequenced and analyzed the low-coverage genomes of 5 species (Apochrysa matsumurae, Chrysopa pallens, Chrysoperla furcifera, Italochrysa pardalina, Nothochrysa sinica), representing 3 subfamilies of Chrysopidae. There are 2213 orthologs selected to reconstruct the phylogenetic tree. Phylogenetic reconstruction was performed using both concatenation and coalescent-based approaches, based on different data matrices. All the results suggested that Chrysopinae were a monophyletic sister group to the branch Apochrysinae + Nothochrysinae. These results were completely supported, except by the concatenation analyses of the nt data matrix, which suggested that Apochrysinae were a sister group to Chrysopinae + Nothchrysinae. The different topology from the nt data matrix may have been caused by the limited sampling of Chrysopidae. The divergence time showed that Chrysopinae diverged from Apochrysinae + Nothochrysinae during the Early Cretaceous period (144–151 Ma), while Aporchrysinae diverged from Nothochrysinae around 117–133 Ma. These results will improve our understanding of the higher phylogeny of Chrysopidae and lay a foundation for the utilization of natural predators. Full article
Show Figures

Figure 1

Back to TopTop