Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Chiang Mai groundwater basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7146 KiB  
Article
Groundwater Recharge Assessment and Recharge Zonation of the Intermontane Groundwater Basin, Chiang Mai, Thailand, Using a Groundwater Flow Model and Stable Isotopes
by Muhammad Zakir Afridi, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Shoaib Qamar and Schradh Saenton
Sustainability 2025, 17(12), 5560; https://doi.org/10.3390/su17125560 - 17 Jun 2025
Viewed by 1915
Abstract
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas [...] Read more.
Urbanization, escalating agriculture, tourism, and industrial development in the Chiang Mai–Lamphun groundwater basin in northern Thailand have increased water demand, causing widespread groundwater extraction. Over the past few decades, there has been a rapid, unrecoverable steady drop in groundwater levels in several areas in Chiang Mai and Lamphun provinces. This study employed hydrogeological investigations, hydrometeorological data analyses, stable isotopic analysis (δ18O and δ2H), and groundwater flow modeling using a 3D groundwater flow model (MODFLOW) to quantify groundwater recharge and delineate important groundwater recharge zones within the basin. The results showed that floodplain deposits exhibited the highest recharge rate, 104.4 mm/y, due to their proximity to rivers and high infiltration capacity. In contrast, younger terrain deposits, covering the largest area of 1314 km2, contributed the most to total recharge volume with an average recharge rate of 99.8 mm/y. Seven significant recharge zones within the basin, where annual recharge rates exceeded 105 mm/y (average recharge of the entire basin), were also delineated. Zone 4, covering parts of densely populated Muaeng Lamphun, Ban Thi, and Saraphi districts, had the largest area of 330 km2 and a recharge rate of 130.2 mm/y. Zone 6, encompassing Wiang Nong Long, Bai Hong, and Pa Sang districts, exhibited the highest recharge rate of 134.6 mm/y but covered a smaller area of 67 km2. Stable isotopic data verified that recent precipitation predominantly recharged shallow groundwater, with minimal evaporation or isotopic exchange. The basin-wide average recharge rate was 104 mm/y, reflecting the combined influence of geology, permeability, and spatial distribution. These findings provide critical insights for sustainable groundwater management in the region, particularly in the context of climate change and increasing water demand. Full article
Show Figures

Figure 1

23 pages, 135602 KiB  
Article
Evaluation of Groundwater Potential and Safe Yield of Heterogeneous Unconsolidated Aquifers in Chiang Mai Basin, Northern Thailand
by Sutthipong Taweelarp, Morrakot Khebchareon and Schradh Saenton
Water 2021, 13(4), 558; https://doi.org/10.3390/w13040558 - 22 Feb 2021
Cited by 7 | Viewed by 6627
Abstract
Chiang Mai basin has an escalating population growth resulting in high demand for water consumption. Lack of surface water supply in most parts of the basin gives rise to the increasing use of groundwater which leads to a continuous decline in groundwater level [...] Read more.
Chiang Mai basin has an escalating population growth resulting in high demand for water consumption. Lack of surface water supply in most parts of the basin gives rise to the increasing use of groundwater which leads to a continuous decline in groundwater level in the past decades. This study is the first long-term groundwater monitoring and modeling study that aims at developing a transient, regional groundwater flow model of heterogeneous unconsolidated aquifers based on the MODFLOW program. Long-term groundwater monitoring data from 49 piezometers were used in model calibration and validation. The pilot points technique was used to account for the spatial variability of hydrogeologic parameters of heterogeneous aquifers. The simulation results and statistics showed that most sensitive and significant model parameters were spatially variable hydraulic conductivities and recharge rates. The Chiang Mai basin’s unconsolidated aquifers do not have high potential. The water table and/or potentiometric surface in the southeast and southwest areas of Chiang Mai city were continuously decreasing with no sign of recovery indicating critical groundwater condition and careful management must be considered. Safe yield calculation, based on a 2-m average drawdown threshold, suggested that unconsolidated aquifers of the Chiang Mai basin can sustain overall abstraction rates up to 51.2 Mm3/y or approximately 214% of the current extraction rates. Full article
Show Figures

Figure 1

Back to TopTop