Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Centella asiatica (Linn.) Urban

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4361 KiB  
Article
Two-Stage Ensemble Deep Learning Model for Precise Leaf Abnormality Detection in Centella asiatica
by Budsaba Buakum, Monika Kosacka-Olejnik, Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Peerawat Luesak, Natthapong Nanthasamroeng and Sarayut Gonwirat
AgriEngineering 2024, 6(1), 620-644; https://doi.org/10.3390/agriengineering6010037 - 4 Mar 2024
Cited by 6 | Viewed by 2296
Abstract
Leaf abnormalities pose a significant threat to agricultural productivity, particularly in medicinal plants such as Centella asiatica (Linn.) Urban (CAU), where they can severely impact both the yield and the quality of leaf-derived substances. In this study, we focus on the early detection [...] Read more.
Leaf abnormalities pose a significant threat to agricultural productivity, particularly in medicinal plants such as Centella asiatica (Linn.) Urban (CAU), where they can severely impact both the yield and the quality of leaf-derived substances. In this study, we focus on the early detection of such leaf diseases in CAU, a critical intervention for minimizing crop damage and ensuring plant health. We propose a novel parallel-Variable Neighborhood Strategy Adaptive Search (parallel-VaNSAS) ensemble deep learning method specifically designed for this purpose. Our approach is distinguished by a two-stage ensemble model, which combines the strengths of advanced image segmentation and Convolutional Neural Networks (CNNs) to detect leaf diseases with high accuracy and efficiency. In the first stage, we employ U-net, Mask-R-CNN, and DeepNetV3++ for the precise image segmentation of leaf abnormalities. This step is crucial for accurately identifying diseased regions, thereby facilitating a focused and effective analysis in the subsequent stage. The second stage utilizes ShuffleNetV2, SqueezeNetV2, and MobileNetV3, which are robust CNN architectures, to classify the segmented images into different categories of leaf diseases. This two-stage methodology significantly improves the quality of disease detection over traditional methods. By employing a combination of ensemble segmentation and diverse CNN models, we achieve a comprehensive and nuanced analysis of leaf diseases. Our model’s efficacy is further enhanced through the integration of four decision fusion strategies: unweighted average (UWA), differential evolution (DE), particle swarm optimization (PSO), and Variable Neighborhood Strategy Adaptive Search (VaNSAS). Through extensive evaluations of the ABL-1 and ABL-2 datasets, which include a total of 14,860 images encompassing eight types of leaf abnormalities, our model demonstrates its superiority. The ensemble segmentation method outperforms single-method approaches by 7.34%, and our heterogeneous ensemble model excels by 8.43% and 14.59% compared to the homogeneous ensemble and single models, respectively. Additionally, image augmentation contributes to a 5.37% improvement in model performance, and the VaNSAS strategy enhances solution quality significantly over other decision fusion methods. Overall, our novel parallel-VaNSAS ensemble deep learning method represents a significant advancement in the detection of leaf diseases in CAU, promising a more effective approach to maintaining crop health and productivity. Full article
Show Figures

Figure 1

36 pages, 4271 KiB  
Article
Automated Classification of Agricultural Species through Parallel Artificial Multiple Intelligence System–Ensemble Deep Learning
by Keartisak Sriprateep, Surajet Khonjun, Paulina Golinska-Dawson, Rapeepan Pitakaso, Peerawat Luesak, Thanatkij Srichok, Somphop Chiaranai, Sarayut Gonwirat and Budsaba Buakum
Mathematics 2024, 12(2), 351; https://doi.org/10.3390/math12020351 - 22 Jan 2024
Cited by 4 | Viewed by 2423
Abstract
The classification of certain agricultural species poses a formidable challenge due to their inherent resemblance and the absence of dependable visual discriminators. The accurate identification of these plants holds substantial importance in industries such as cosmetics, pharmaceuticals, and herbal medicine, where the optimization [...] Read more.
The classification of certain agricultural species poses a formidable challenge due to their inherent resemblance and the absence of dependable visual discriminators. The accurate identification of these plants holds substantial importance in industries such as cosmetics, pharmaceuticals, and herbal medicine, where the optimization of essential compound yields and product quality is paramount. In response to this challenge, we have devised an automated classification system based on deep learning principles, designed to achieve precision and efficiency in species classification. Our approach leverages a diverse dataset encompassing various cultivars and employs the Parallel Artificial Multiple Intelligence System–Ensemble Deep Learning model (P-AMIS-E). This model integrates ensemble image segmentation techniques, including U-Net and Mask-R-CNN, alongside image augmentation and convolutional neural network (CNN) architectures such as SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1. The culmination of these elements results in the P-AMIS-E model, enhanced by an Artificial Multiple Intelligence System (AMIS) for decision fusion, ultimately achieving an impressive accuracy rate of 98.41%. This accuracy notably surpasses the performance of existing methods, such as ResNet-101 and Xception, which attain 93.74% accuracy on the testing dataset. Moreover, when applied to an unseen dataset, the P-AMIS-E model demonstrates a substantial advantage, yielding accuracy rates ranging from 4.45% to 31.16% higher than those of the compared methods. It is worth highlighting that our heterogeneous ensemble approach consistently outperforms both single large models and homogeneous ensemble methods, achieving an average improvement of 13.45%. This paper provides a case study focused on the Centella Asiatica Urban (CAU) cultivar to exemplify the practical application of our approach. By integrating image segmentation, augmentation, and decision fusion, we have significantly enhanced accuracy and efficiency. This research holds theoretical implications for the advancement of deep learning techniques in image classification tasks while also offering practical benefits for industries reliant on precise species identification. Full article
Show Figures

Figure 1

Back to TopTop