Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Ce–H–MCM-41

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3095 KiB  
Article
Phoenix dactylifera L. Seed Pretreatment for Oil Extraction and Optimization Studies for Biodiesel Production Using Ce-Zr/Al-MCM-41 Catalyst
by Zainab Ibrahim Jibril, Anita Ramli, Khairulazhar Jumbri and Normawati Mohamad Yunus
Catalysts 2020, 10(7), 764; https://doi.org/10.3390/catal10070764 - 9 Jul 2020
Cited by 6 | Viewed by 3681
Abstract
This work compared the effect of soaking and roasting Phoenix dactylifera L. seeds pretreatment methods on oil yield. The conversion of the Phoenix dactylifera L. seed oil to fatty acid methyl ester (FAME) was conducted via transesterification reaction using Ce-Zr/Al-MCM-41 monometallic and bimetallic [...] Read more.
This work compared the effect of soaking and roasting Phoenix dactylifera L. seeds pretreatment methods on oil yield. The conversion of the Phoenix dactylifera L. seed oil to fatty acid methyl ester (FAME) was conducted via transesterification reaction using Ce-Zr/Al-MCM-41 monometallic and bimetallic catalysts. The reaction conditions were optimized using response surface methodology based on the central composite design (RSM-CCD). The result shows a quadratic model fitting with an R2 value of ~0.98% from the analysis of variance. In addition, the optimum FAME yield of 93.83% was obtained at a reaction temperature of 60.5 °C, a reaction time of 3.8 h, a catalyst concentration of 4 wt.%, and a methanol to oil molar ratio of 6.2:1 mol/mol. The effect of the regenerated catalyst was significantly maintained for five cycles. The fuel properties of the produced FAME lie within the values reported in studies, ASTM D6751, and EN14214 standards. Full article
(This article belongs to the Special Issue Computational Chemistry and Catalysis: Prediction and Design)
Show Figures

Graphical abstract

16 pages, 6632 KiB  
Article
Synergetic Impact of Secondary Metal Oxides of Cr-M/MCM41 Catalyst Nanoparticles for Ethane Oxidative Dehydrogenation Using Carbon Dioxide
by Abdulrhman S. Al-Awadi, Ahmed Mohamed El-Toni, Mansour Alhoshan, Aslam Khan, Muhammad Ali Shar, Ahmed E. Abasaeed and Saeed M. Al-Zahrani
Crystals 2020, 10(1), 7; https://doi.org/10.3390/cryst10010007 - 20 Dec 2019
Cited by 10 | Viewed by 3983
Abstract
Oxidative dehydrogenation of alkanes to alkenes by a mild oxidant such as carbon dioxide is an active area of research. A series of MCM41-supported bimetallic oxide catalysts containing chromium oxide in addition to metal oxides (Ce, Co, Zn, V, Nb, and Mo) has [...] Read more.
Oxidative dehydrogenation of alkanes to alkenes by a mild oxidant such as carbon dioxide is an active area of research. A series of MCM41-supported bimetallic oxide catalysts containing chromium oxide in addition to metal oxides (Ce, Co, Zn, V, Nb, and Mo) has been prepared. The binary catalysts have Cr metal oxide incorporated into MCM41 structure while the other oxides are either incorporated with Cr or impregnated on the MCM41 surface. The synthesized catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 sorption, scanning electron microscopy (SEM), hydrogen temperature programmed reduction (H2-TPR), and Diffuse reflectance UV–vis spectroscopy (DRS). The catalytic activity of Cr(4)-M(4)/MCM-41 catalysts in the dehydrogenation of ethane with CO2 was investigated. The textural properties of the synthesized samples showed that the addition of the bimetallic oxides did not disturb the mesoporous structure of MCM41 and the prepared catalysts exhibited a high BET surface area; however, the lowest surface area was recorded for Cr(4)-Mo(4)/MCM41 catalyst at 701 m2/g. Among the prepared catalysts, H2-TPR profile of Cr(4)-Ce(4)/MCM41 revealed the increase in the concentration of Cr6+ species which interacted with the framework of siliceous support. On the other hand, H2-TPR profiles of Cr(4)-Co(4)/MCM41 showed wide reduction peaks centered at 400 °C which is ascribed to reduction of Cr6+ to Cr3+ species and Co3O4 to metallic Co. At the same time, Cr(4)-Mo(4)/MCM41 and Cr(4)-V(4)/MCM41 exhibited higher temperature reduction peaks, indicating these two catalysts require higher activation temperatures. The synergy between the Cr with Zn or Nb metals reduced the concentration of Cr6+ species which is reflected in their catalytic performance. Cr(4)-Ce(4)/MCM41 recorded the highest catalytic activity toward ethylene production where the ethane conversion and ethylene yield were 37.9% and 35.1%, respectively. Full article
Show Figures

Figure 1

29 pages, 10708 KiB  
Article
Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol
by Carlos M. Aiube, Karolyne V. de Oliveira and Julio L. de Macedo
Catalysts 2019, 9(4), 377; https://doi.org/10.3390/catal9040377 - 23 Apr 2019
Cited by 11 | Viewed by 5003
Abstract
Understanding the effects of synthetic parameters in the catalytic activity of heterogeneous catalysts is of utmost importance when aiming for optimal reaction conditions. Hence, we disclose in this work the synthesis and characterization of cerium-modified MCM-41 materials. In addition, it was observed for [...] Read more.
Understanding the effects of synthetic parameters in the catalytic activity of heterogeneous catalysts is of utmost importance when aiming for optimal reaction conditions. Hence, we disclose in this work the synthesis and characterization of cerium-modified MCM-41 materials. In addition, it was observed for the first time, differences in catalytic activity when using different cerium synthetic precursors: CeCl3·7H2O and Ce(NO3)3·6H2O (Ce-MCM-Cl and Ce-MCM-NO3, respectively). A mechanism for cerium incorporation in MCM-41 was proposed, where [Ce(OH)3] species were hydrogen bonded to silicate anions, forming framework Ce-O-Si bonds during condensation and, consequently, causing distortion of the typical hexagonal mesophase. It was also observed that Ce(OH)3 formed aggregated layers with template assemblies during synthesis, resulting in non-framework CeO2 species on the MCM-41 surface after calcination. These CeO2 species were preferentially formed for Ce-MCM-NO3 and were attributed to the nitrate ions’ strong binding to template molecules. In the solvent free liquid-phase oxidation of benzyl alcohol (BzOH), Ce-MCM-Cl achieved better BzOH conversions and benzaldehyde (BzD) yields, while Ce-MCM-NO3 offered increased BzD selectivity. The catalysts’ reusability was also studied over three catalytic runs, where Ce-MCM-NO3 was more resistant than Ce-MCM-Cl towards deactivation. The observed catalytic behavior shows the importance of metal precursors in the obtainment of materials with desirable final properties. Full article
Show Figures

Figure 1

12 pages, 6424 KiB  
Article
Enhanced CH4 Production from Corn-Stalk Pyrolysis Using Ni-5CeO2/MCM-41 as a Catalyst
by Fang Huang, Weizun Li, Qidong Hou and Meiting Ju
Energies 2019, 12(5), 774; https://doi.org/10.3390/en12050774 - 26 Feb 2019
Cited by 2 | Viewed by 2747
Abstract
Production of syngas from lignocellulosic biomass though pyrolysis is a promising solution for the large-scale utilization of biomass. However, current pyrolysis approaches suffer from the relative low product yield and selectivity, limiting their practical application. To solve this problem, a series of nickel-based [...] Read more.
Production of syngas from lignocellulosic biomass though pyrolysis is a promising solution for the large-scale utilization of biomass. However, current pyrolysis approaches suffer from the relative low product yield and selectivity, limiting their practical application. To solve this problem, a series of nickel-based catalysts including Ni/MCM-41, Ni-5CeO2/MCM-41, and Ni-5La2O3/MCM-41 were prepared and characterized by transmission electron microscopy (TEM), N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and H2-temperature-programmed reaction (TPR) analysis. It was observed that the simultaneous addition of Ni and CeO2 to MCM-41 could increase the reducibility of Ni and the number of active Ni0 sites on the surface of the catalyst. Consequently, Ni-5CeO2/MCM-41 gave a CH4 yield of 14.6 mmol/g, which is remarkably higher than that (10.5 mmol/g) obtained in the absence of the catalyst. Meanwhile, the CO and H2 yields increased slightly, while the CO2 yield decreased slightly. Therefore, the improved CH4 yield and selectivity was mainly due to the increased decomposition of tarry compounds catalyzed by Ni/MCM-41 with the assistance of CeO2. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 724 KiB  
Article
Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15
by Martina Stekrova, Narendra Kumar, Päivi Mäki-Arvela, Oleg V. Ardashov, Konstantin P. Volcho, Nariman F. Salakhutdinov and Dmitry Yu. Murzin
Materials 2013, 6(5), 2103-2118; https://doi.org/10.3390/ma6052103 - 17 May 2013
Cited by 32 | Viewed by 7806
Abstract
Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were [...] Read more.
Ce-modified mesoporous silica materials MCM-41 and SBA-15, namely 32 wt % Ce–Si–MCM-41, 16 wt % Ce–H–MCM-41 and 20 wt % Ce–Si–SBA-15, were prepared, characterized and studied in the selective preparation of trans-carveol by α-pinene oxide isomerization. The characterizations of these catalysts were performed using scanning electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and FTIR pyridine adsorption. Selective preparation of trans-carveol was carried out in the liquid phase in a batch reactor. The activity and the selectivity of catalyst were observed to be influenced by their acidity, basicity and morphology of the mesoporous materials. The formation of trans-carveol is moreover strongly influenced by the basicity of the used solvent and in order to achieve high yields of this desired alcohol it is necessary to use polar basic solvent. Full article
(This article belongs to the Special Issue Advances in Mesoporous Materials)
Show Figures

Figure 1

Back to TopTop