Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Caridina multidentata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1359 KiB  
Article
Urea Excretion and Arginase Activity as New Biomarkers for Nitrite Stress in Freshwater Aquatic Animals
by Gaetana Napolitano, Gianluca Fasciolo, Claudio Agnisola and Paola Venditti
Water 2021, 13(24), 3521; https://doi.org/10.3390/w13243521 - 9 Dec 2021
Cited by 11 | Viewed by 3790
Abstract
Background: In recent years, the concern has been growing on increasing aquatic nitrite levels due to anthropogenic activities. Crustaceans and fish easily uptake nitrite via the chloride uptake system of gills. High nitrite body levels may interfere with nitric oxide (NO) production by [...] Read more.
Background: In recent years, the concern has been growing on increasing aquatic nitrite levels due to anthropogenic activities. Crustaceans and fish easily uptake nitrite via the chloride uptake system of gills. High nitrite body levels may interfere with nitric oxide (NO) production by nitric oxide synthase (NOS). The arginase, which catalyzes arginine conversion to ornithine and urea, is central to NO homeostasis. In vivo, changes in the arginase activity alter urea body levels and urea excretion and modulate NOS by altering arginine availability for NO synthesis. Excess arginase activity may uncouple NOS and induce oxidative stress. Methods: We tested muscle arginase activity and urea excretion in two fish species, zebrafish and convict cichlid, and the crustacean Yamato shrimp, under sub-lethal nitrite stress. Results: Exposure to nitrite (2 mM in the fish, 1 mM in the shrimp) significantly increased blood nitrite concentration in all species. Concomitantly, nitrite stress significantly increased arginase activity, urea excretion, and urea levels in the blood. In Yamato shrimp, urea levels also increased in muscle. Conclusion: Our results agree with the hypothesis that nitrite stress affects NO homeostasis by arginase stimulation and urea excretion. These parameters might function as markers of sub-lethal nitrite stress in freshwater fish and crustaceans. Full article
Show Figures

Graphical abstract

Back to TopTop