Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Carbonaceous nanoparticulates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5994 KiB  
Article
Hydrogen Oxidation and Oxygen Reduction Reactions on an OsRu-Based Electrocatalyst Synthesized by Microwave Irradiation
by Ángela Selva-Ochoa, Javier Su-Gallegos, Pathiyammattom Joseph Sebastian, Lorena Magallón-Cacho and Edgar Borja-Arco
Materials 2021, 14(19), 5692; https://doi.org/10.3390/ma14195692 - 30 Sep 2021
Cited by 2 | Viewed by 2063
Abstract
This work presents an OsRu-based electrocatalyst synthesis, by a rapid and efficient method through microwave irradiation. The outstanding electrocatalyst shows a dual catalytic activity, demonstrating both: hydrogen oxidation and oxygen reduction reactions. The material is structural and morphologically characterized by FT-IR, X-ray diffraction, [...] Read more.
This work presents an OsRu-based electrocatalyst synthesis, by a rapid and efficient method through microwave irradiation. The outstanding electrocatalyst shows a dual catalytic activity, demonstrating both: hydrogen oxidation and oxygen reduction reactions. The material is structural and morphologically characterized by FT-IR, X-ray diffraction, EDS, and SEM, indicating nanoparticulated Os and Ru metallic phases with a crystallite size of ∼6 nm, calculated by the Scherrer equation. The metal nanoparticles are apparently deposited on a carbonaceous sponge-like morphology structure. Its electrochemical characterization is performed in 0.5 M H2SO4 by the rotating disk electrode technique, employing cyclic and linear sweep voltammetry. Two different ink treatments have been studied to improve the obtained polarization curves. The material is also tested in the presence of methanol for the oxygen reduction reaction, showing an important resistance to this contaminant, making it viable for its use in direct methanol fuel cells (DMFCs) as a cathode and in polymer electrolyte fuel cells (PEMFCs) as an anode as much as a cathode. Full article
(This article belongs to the Special Issue Microwave Processing Technology for a Variety of Materials)
Show Figures

Graphical abstract

16 pages, 2143 KiB  
Article
Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots
by L. E. Murr
Int. J. Environ. Res. Public Health 2008, 5(5), 321-336; https://doi.org/10.3390/ijerph5050321 - 31 Dec 2008
Cited by 20 | Viewed by 11565
Abstract
This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and [...] Read more.
This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (~5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (~8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. Full article
Show Figures

14 pages, 728 KiB  
Article
Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment
by K. F. Soto, L. E. Murr and K. M. Garza
Int. J. Environ. Res. Public Health 2008, 5(1), 12-25; https://doi.org/10.3390/ijerph5010012 - 30 Mar 2008
Cited by 42 | Viewed by 11418
Abstract
We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano-PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial [...] Read more.
We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano-PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model) cell line (A549). These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N), and high-volume glass fiber collected soots: candle, wood, diesel (truck), tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich) flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability) for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8) was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS) production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates. Full article
Show Figures

19 pages, 1725 KiB  
Article
Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects
by L. E. Murr, K. F. Soto, K. M. Garza, P. A. Guerrero, F. Martinez, E. V. Esquivel, D. A. Ramirez, Y. Shi, J. J. Bang and J. Venzor, III
Int. J. Environ. Res. Public Health 2006, 3(1), 48-66; https://doi.org/10.3390/ijerph2006030007 - 31 Mar 2006
Cited by 48 | Viewed by 11715
Abstract
In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter [...] Read more.
In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined. Full article
Show Figures

Back to TopTop