Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Cape 26 Flats Aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 26833 KB  
Article
Estimation of Infiltration Parameters for Groundwater Augmentation in Cape Town, South Africa
by Kgomoangwato Paul Mavundla, John Okedi, Denis Kalumba and Neil Philip Armitage
Hydrology 2025, 12(4), 87; https://doi.org/10.3390/hydrology12040087 - 13 Apr 2025
Cited by 1 | Viewed by 1994
Abstract
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in [...] Read more.
In early 2018, Cape Town, South Africa, experienced severe water shortages during the worst drought in nearly a century (2015–2017), underscoring the need to diversify water resources, including groundwater. This study evaluated infiltration rates and hydraulic properties of three representative stormwater ponds in the Zeekoe Catchment, Cape Town, to assess their feasibility as recharge basins for transferring detained stormwater runoff into the underlying aquifer. Field infiltration data were analysed to estimate hydraulic properties, while laboratory permeability tests and material classification on 36 soil samples provided inputs for numerical modelling using HYDRUS 2-D software. Simulations estimated recharge rates and indicated wetting front movement from pond surfaces to the water table (~5.5 m depth) ranged between 15 and 140 h. The results revealed field hydraulic conductivity values of 0.3 to 19.9 cm/h, with laboratory estimates up to 103% higher due to controlled conditions. Simulated infiltration rates were 67–182% higher than field measurements, attributed to idealised assumptions. Despite these variations, ponds in the central catchment exhibited the highest infiltration rates, indicating suitability for artificial recharge. Explicit recognition of pond-specific infiltration variability significantly contributes to informed urban water security planning, enabling targeted interventions to optimise groundwater recharge initiatives. Full article
Show Figures

Figure 1

Back to TopTop