Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = CTM emulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1597 KiB  
Article
Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia
by Stephen Vander Hoorn, Jill S. Johnson, Kevin Murray, Robin Smit, Jane Heyworth, Sean Lam and Martin Cope
Atmosphere 2022, 13(12), 2009; https://doi.org/10.3390/atmos13122009 - 29 Nov 2022
Cited by 6 | Viewed by 4004
Abstract
Simulation outputs from chemical transport models (CTMs) are essential to plan effective air quality policies. A key strength of these models is their ability to separate out source-specific components which facilitate the simulation of the potential impact of policy on future air quality. [...] Read more.
Simulation outputs from chemical transport models (CTMs) are essential to plan effective air quality policies. A key strength of these models is their ability to separate out source-specific components which facilitate the simulation of the potential impact of policy on future air quality. However, configuring and running these models is complex and computationally intensive, making the evaluation of multiple scenarios less accessible to many researchers and policy experts. The aim of this work is to present how Gaussian process emulation can provide a top-down approach to interrogating and interpreting the outputs from CTMs at minimal computational cost. A case study is presented (based on fine particle sources in the southwest of Western Australia) to illustrate how an emulator can be constructed to simultaneously evaluate changes in emissions from on-road transport and electricity sectors. This study demonstrates how emulation provides a flexible way of exploring local impacts of electric vehicles and wider regional effects of emissions from electricity generation. The potential for emulators to be applied to other settings involving air quality research is discussed. Full article
(This article belongs to the Special Issue Air Pollution, Air Quality and Human Health)
Show Figures

Figure 1

15 pages, 2205 KiB  
Article
A Chemical Transport Model Emulator for the Interactive Evaluation of Mercury Emission Reduction Scenarios
by Francesco De Simone, Francesco D’Amore, Francesco Marasco, Francesco Carbone, Mariantonia Bencardino, Ian M. Hedgecock, Sergio Cinnirella, Francesca Sprovieri and Nicola Pirrone
Atmosphere 2020, 11(8), 878; https://doi.org/10.3390/atmos11080878 - 18 Aug 2020
Cited by 9 | Viewed by 4056
Abstract
Implementation of the Minamata Convention on Mercury requires all parties to “control, and where feasible, reduce” mercury (Hg) emissions from a convention-specified set of sources. However, the convention does not specify the extent of the measures to be adopted, which may only be [...] Read more.
Implementation of the Minamata Convention on Mercury requires all parties to “control, and where feasible, reduce” mercury (Hg) emissions from a convention-specified set of sources. However, the convention does not specify the extent of the measures to be adopted, which may only be analysed by decision-makers using modelled scenarios. Currently, the numerical models available to study the Hg atmospheric cycle require significant expertise and high-end hardware, with results which are generally available on a time frame of days to weeks. In this work we present HERMES, a statistical emulator built on the output of a global Chemical Transport Model (CTM) for Hg (ECHMERIT), to simulate changes in anthropogenic Hg (Hganthr) deposition fluxes in a source-receptor framework, due to perturbations to Hganthr emissions and the associated statistical significance of the changes. The HERMES emulator enables stakeholders to evaluate the implementation of different Hganthr emission scenarios in an interactive and real-time manner, simulating the application of the different Best Available Technologies. HERMES provides the scientific soundness of a full CTM numerical framework in an interactive and user-friendly spreadsheet, without the necessity for specific training or formation and is a first step towards a more comprehensive, and integrated, decision support system to aid decision-makers in the implementation of the Minamata Convention. Full article
(This article belongs to the Special Issue Air Quality Assessment and Management)
Show Figures

Graphical abstract

Back to TopTop