Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = CSF glutamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1451 KB  
Article
Glutamine and Albumin Levels in Cerebrospinal Fluid Are Correlated with Neurological Severity in an Experimental Model of Acute Hepatic Encephalopathy
by Pedro Arend Guazzelli, Felipe dos Santos Fachim, Anderson Santos Travassos, Caroline Casagrande Schaukoski, Pâmela Cristina Lukasewicz Ferreira, Fernanda Uruth Fontella, Marco Antônio de Bastiani, Adriano Martimbianco de Assis and Diogo Onofre Souza
Metabolites 2025, 15(9), 598; https://doi.org/10.3390/metabo15090598 - 8 Sep 2025
Viewed by 286
Abstract
Background/Objectives: Hepatic encephalopathy (HE) is a severe neurological complication of acute liver failure (ALF) characterized by the accumulation of neurotoxic metabolites and impaired cerebral function. We aimed to examine the correlation between HE severity and cerebrospinal fluid (CSF) biomarker levels in a rat [...] Read more.
Background/Objectives: Hepatic encephalopathy (HE) is a severe neurological complication of acute liver failure (ALF) characterized by the accumulation of neurotoxic metabolites and impaired cerebral function. We aimed to examine the correlation between HE severity and cerebrospinal fluid (CSF) biomarker levels in a rat model of ALF induced by subtotal hepatectomy. Methods: Male Wistar rats underwent 92% hepatectomy and were monitored for neurological impairment via a standardized HE score. At twenty-four hours post surgery, CSF and blood were collected for biochemical analysis. Results: We found a significant positive correlation between neurological severity and CSF levels of glutamine (r = 0.929, p < 0.001) and albumin (r = 0.869, p < 0.001), both with HE grade I scores, highlighting their prominent role as HE biomarkers. Other amino acids, including aspartate (r = 0.790, p < 0.001), glutamate (r = 0.853, p < 0.001), isoleucine (r = 0.834, p < 0.001), leucine (r = 0.813, p < 0.001), lysine (r = 0.861, p < 0.001), methionine (r = 0.889, p < 0.001), phenylalanine (r = 0.916, p < 0.001), ornithine (r = 0.775, p < 0.001), tryptophan (r = 0.814, p < 0.001), and valine (r = 0.721, p < 0.001), also showed significant correlations with HE severity but not with HE grade I scores. Conclusions: These findings underscore the potential of glutamine and albumin in CSF as key biomarkers for assessing neurological severity in ALF patients. Full article
(This article belongs to the Special Issue Metabolic Profiling in Neurometabolisms)
Show Figures

Figure 1

15 pages, 1036 KB  
Article
Immunonutrition in Acute Geriatric Care: Clinical Outcomes, Inflammatory Profiles, and Immune Responses
by Virginia Boccardi, Luigi Cari, Mahdieh Naghavi Alhosseini, Patrizia Bastiani, Michela Scamosci, Giulia Caironi, Giulia Aprea, Francesca Mancinetti, Roberta Cecchetti, Carmelinda Ruggiero, Giuseppe Nocentini and Patrizia Mecocci
Nutrients 2024, 16(23), 4211; https://doi.org/10.3390/nu16234211 - 5 Dec 2024
Cited by 2 | Viewed by 2055
Abstract
Background and Aims: Malnutrition is common in acutely ill geriatric patients, worsening immune function and clinical outcomes. Immunonutrition, containing nutrients like omega-3 fatty acids, arginin and glutamine, may improve recovery in this population. This study aimed to evaluate the impact of immunonutrition on [...] Read more.
Background and Aims: Malnutrition is common in acutely ill geriatric patients, worsening immune function and clinical outcomes. Immunonutrition, containing nutrients like omega-3 fatty acids, arginin and glutamine, may improve recovery in this population. This study aimed to evaluate the impact of immunonutrition on clinical outcomes, inflammatory markers, and immune responses in frail, hospitalized older adults. Methods: This is a retrospective observational study. In total, 36 subjects, during hospitalization, received either an immunonutrition formula or isoproteic and isocaloric enteral nutrition. The primary outcome was the length of hospital stay (LOS), with secondary outcomes focused on inflammatory cytokines and immune parameters within a week of hospitalization. Results: Patients were primarily oldest-old, with a mean age of 88.6 years ± 4.9 (range 79–96). The immunonutrition group had a significantly shorter LOS (11.37 ± 4.87 vs. 16.82 ± 10.83 days, p = 0.05) and showed increases in key cytokines (G-CSF, INF-α2, IL-12p70, IL-15, IL-2, and IL-3, p < 0.05) enhanced immune function. A decrease in T cells and an increased B/T cell ratio was also observed. No significant differences in infection rates or 90-day survival were found. Conclusions: Enteral immunonutrition improved clinical outcomes by reducing LOS and modulating immune responses in frail patients, suggesting potential benefits in recovery. Further studies are needed to confirm these findings. Full article
(This article belongs to the Special Issue Nutritional Management in Intensive Care)
Show Figures

Figure 1

16 pages, 856 KB  
Article
Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer’s Disease
by Vincent Sonny Leong, Jiaquan Yu, Katherine Castor, Abdulhakim Al-Ezzi, Xianghong Arakaki and Alfred Nji Fonteh
Cells 2024, 13(11), 970; https://doi.org/10.3390/cells13110970 - 4 Jun 2024
Cited by 1 | Viewed by 1852
Abstract
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aβ42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly [...] Read more.
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aβ42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aβ42/tau ratios (CH-NATs) and (2) pathological Aβ42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~−0.74–−0.96, p = 0.0001–0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82–0.95, p = 0.0003–0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = −0.96, p = 0.037 and r = −0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies. Full article
(This article belongs to the Special Issue Glutamatergic Transmission in Brain Development and Disease)
Show Figures

Figure 1

15 pages, 1663 KB  
Article
Experimental Basis Sets of Quantification of Brain 1H-Magnetic Resonance Spectroscopy at 3.0 T
by Hyeon-Man Baek
Metabolites 2023, 13(3), 368; https://doi.org/10.3390/metabo13030368 - 1 Mar 2023
Cited by 2 | Viewed by 2801
Abstract
In vivo short echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare [...] Read more.
In vivo short echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare it with the performance of a vendor-provided basis set. A 3T clinical scanner with 32-channel receive-only phased array head coil was used to generate 16 brain metabolites for the metabolite basis set. For voxel localization, point-resolved spin-echo sequence (PRESS) was used with volume of interest (VOI) positioned at the center of the phantoms. Two different basis sets were subjected to linear combination of model spectra of metabolite solutions in vitro (LCModel) analysis to evaluate the in-house acquired in vivo 1H-MR spectra from the left prefrontal cortex of 22 healthy subjects. To evaluate the performance of the two basis sets, the Cramer-Rao lower bounds (CRLBs) of each basis set were compared. The LCModel quantified the following metabolites and macromolecules: alanine (Ala), aspartate (Asp), γ-amino butyric acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GHS), Ins (myo-Inositol), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), taurine (Tau), phosphoryl-choline + glycerol-phosphoryl-choline (tCho), N-acetylaspartate + N-acetylaspartylglutamate (tNA), creatine + phosphocreatine (tCr), Glu + Gln (Glx) and Lip13a, Lip13b, Lip09, MM09, Lip20, MM20, MM12, MM14, MM17, Lip13a + Lip13b, MM14 + Lip13a + Lip13b + MM12, MM09 + Lip09, MM20 + Lip20. Statistical analysis showed significantly different CRLBs: Asp, GABA, Gln, GSH, Ins, Lac, NAA, NAAG, Tau, tCho, tNA, Glx, MM20, MM20 + Lip20 (p < 0.001), tCr, MM12, MM17 (p < 0.01), and Lip20 (p < 0.05). The estimated ratio of cerebrospinal fluid (CSF) in the region of interest was calculated to be about 5%. Fitting performances are better, for the most part, with the in-house basis set, which is more precise than the vendor-provided basis set. In particular, Asp is expected to have reliable CRLB (<30%) at high field (e.g., 3T) in the left prefrontal cortex of human brain. The quantification of Asp was difficult, due to the inaccuracy of Asp fitting with the vendor-provided basis set. Full article
(This article belongs to the Topic Metabolism and Health)
Show Figures

Figure 1

17 pages, 8068 KB  
Article
1,2-13C2-Glucose Tracing Approach to Assess Metabolic Alterations of Human Monocytes under Neuroinflammatory Conditions
by Ginevra Giacomello, Carolin Otto, Josef Priller, Klemens Ruprecht, Chotima Böttcher and Maria Kristina Parr
Curr. Issues Mol. Biol. 2023, 45(1), 765-781; https://doi.org/10.3390/cimb45010051 - 16 Jan 2023
Cited by 4 | Viewed by 3712
Abstract
Neuroinflammation is one of the common features in most neurological diseases including multiple sclerosis (MScl) and neurodegenerative diseases such as Alzheimer’s disease (AD). It is associated with local brain inflammation, microglial activation, and infiltration of peripheral immune cells into cerebrospinal fluid (CSF) and [...] Read more.
Neuroinflammation is one of the common features in most neurological diseases including multiple sclerosis (MScl) and neurodegenerative diseases such as Alzheimer’s disease (AD). It is associated with local brain inflammation, microglial activation, and infiltration of peripheral immune cells into cerebrospinal fluid (CSF) and the central nervous system (CNS). It has been shown that the diversity of phenotypic changes in monocytes in CSF relates to neuroinflammation. It remains to be investigated whether these phenotypic changes are associated with functional or metabolic alteration, which may give a hint to their function or changes in cell states, e.g., cell activation. In this article, we investigate whether major metabolic pathways of blood monocytes alter after exposure to CSF of healthy individuals or patients with AD or MScl. Our findings show a significant alteration of the metabolism of monocytes treated with CSF from patients and healthy donors, including higher production of citric acid and glutamine, suggesting a more active glycolysis and tricarboxylic acid (TCA) cycle and reduced production of glycine and serine. These alterations suggest metabolic reprogramming of monocytes, possibly related to the change of compartment (from blood to CSF) and/or disease-related. Moreover, the levels of serine differ between AD and MScl, suggesting different phenotypic alterations between diseases. Full article
(This article belongs to the Special Issue Signaling Pathways, Development, and Biomarkers in Neuropathy)
Show Figures

Figure 1

19 pages, 3113 KB  
Article
Central Nervous System Metabolism in Autism, Epilepsy and Developmental Delays: A Cerebrospinal Fluid Analysis
by Danielle Brister, Brianna A. Werner, Geoffrey Gideon, Patrick J. McCarty, Alison Lane, Brian T. Burrows, Sallie McLees, P. David Adelson, Jorge I. Arango, William Marsh, Angelea Flores, Matthew T. Pankratz, Ngoc Han Ly, Madison Flood, Danni Brown, David Carpentieri, Yan Jin, Haiwei Gu and Richard E. Frye
Metabolites 2022, 12(5), 371; https://doi.org/10.3390/metabo12050371 - 20 Apr 2022
Cited by 25 | Viewed by 4487
Abstract
Neurodevelopmental disorders are associated with metabolic pathway imbalances; however, most metabolic measurements are made peripherally, leaving central metabolic disturbances under-investigated. Cerebrospinal fluid obtained intraoperatively from children with autism spectrum disorder (ASD, n = 34), developmental delays (DD, n = 20), and those without [...] Read more.
Neurodevelopmental disorders are associated with metabolic pathway imbalances; however, most metabolic measurements are made peripherally, leaving central metabolic disturbances under-investigated. Cerebrospinal fluid obtained intraoperatively from children with autism spectrum disorder (ASD, n = 34), developmental delays (DD, n = 20), and those without known DD/ASD (n = 34) was analyzed using large-scale targeted mass spectrometry. Eighteen also had epilepsy (EPI). Metabolites significantly related to ASD, DD and EPI were identified by linear models and entered into metabolite–metabolite network pathway analysis. Common disrupted pathways were analyzed for each group of interest. Central metabolites most involved in metabolic pathways were L-cysteine, adenine, and dodecanoic acid for ASD; nicotinamide adenine dinucleotide phosphate, L-aspartic acid, and glycine for EPI; and adenosine triphosphate, L-glutamine, ornithine, L-arginine, L-lysine, citrulline, and L-homoserine for DD. Amino acid and energy metabolism pathways were most disrupted in all disorders, but the source of the disruption was different for each disorder. Disruption in vitamin and one-carbon metabolism was associated with DD and EPI, lipid pathway disruption was associated with EPI and redox metabolism disruption was related to ASD. Two microbiome metabolites were also detected in the CSF: shikimic and cis-cis-muconic acid. Overall, this study provides increased insight into unique metabolic disruptions in distinct but overlapping neurodevelopmental disorders. Full article
(This article belongs to the Special Issue Metabolomics of Autism Spectrum Disorder)
Show Figures

Figure 1

16 pages, 2466 KB  
Article
Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis
by Federica Murgia, Lorena Lorefice, Simone Poddighe, Giuseppe Fenu, Maria Antonietta Secci, Maria Giovanna Marrosu, Eleonora Cocco and Luigi Atzori
J. Clin. Med. 2020, 9(3), 863; https://doi.org/10.3390/jcm9030863 - 21 Mar 2020
Cited by 30 | Viewed by 4182
Abstract
Background: Multiple sclerosis (MS) is a chronic immunemediated disease of the central nervous system with a highly variable clinical presentation and disease progression. In this study, we investigate the metabolomics profile of patients affected by relapsing–remitting MS (RRMS)and primary progressive MS (PPMS), in [...] Read more.
Background: Multiple sclerosis (MS) is a chronic immunemediated disease of the central nervous system with a highly variable clinical presentation and disease progression. In this study, we investigate the metabolomics profile of patients affected by relapsing–remitting MS (RRMS)and primary progressive MS (PPMS), in order to find potential biomarkers to distinguish between the two forms. Methods: Cerebrospinal Fluid CSF and blood samples of 34 patients (RRMS n = 22, PPMS n = 12) were collected. Nuclear magnetic resonance (1H-NMR) and mass spectrometry (coupled with a gas chromatography and liquid chromatography) were used as analytical techniques. Subsequently, a multivariate statistical analysis was performed; the resulting significant variables underwent U-Mann–Whitney test and correction for multiple comparisons. Receiver Operating Characteristic ROC curves were built and the pathways analysis was conducted. Results: The analysis of the serum and the CSF of the two classes, allowed the identification of several altered metabolites (lipids, biogenic amines, and amino acids). The pathways analysis indicated the following pathways were affected: Glutathione metabolism, nitrogen metabolism, glutamine–glutamate metabolism, arginine–ornithine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis etc. Conclusion: The analysis allowed the identification of a set of metabolites able to classify RRMS and PPMS patients, each of whom express different patterns of metabolites in the two biofluids. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

18 pages, 3104 KB  
Article
Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing–Remitting Multiple Sclerosis
by Stephanie Herman, Torbjörn Åkerfeldt, Ola Spjuth, Joachim Burman and Kim Kultima
Cells 2019, 8(2), 84; https://doi.org/10.3390/cells8020084 - 24 Jan 2019
Cited by 45 | Viewed by 7247
Abstract
To better understand the pathophysiological differences between secondary progressive multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were [...] Read more.
To better understand the pathophysiological differences between secondary progressive multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were determined using partial least squares discriminant analysis (PLS-DA) and connected to biochemical pathways as well as associated to clinical and radiological measures. Tryptophan metabolism was significantly altered, with perturbed levels of kynurenate, 5-hydroxytryptophan, 5-hydroxyindoleacetate, and N-acetylserotonin in SPMS patients compared with RRMS and controls. SPMS patients had altered kynurenine compared with RRMS patients, and altered indole-3-acetate compared with controls. Regarding the pyrimidine metabolism, SPMS patients had altered levels of uridine and deoxyuridine compared with RRMS and controls, and altered thymine and glutamine compared with RRMS patients. Metabolites from the pyrimidine metabolism were significantly associated with disability, disease activity and brain atrophy, making them of particular interest for understanding the disease mechanisms and as markers of disease progression. Overall, these findings are of importance for the characterization of the molecular pathogenesis of SPMS and support the hypothesis that the CSF metabolome may be used to explore changes that occur in the transition between the RRMS and SPMS pathologies. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Multiple Sclerosis)
Show Figures

Figure 1

Back to TopTop