Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = CCHamide-2 signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2456 KB  
Article
RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, Acyrthosiphon pisum
by Sohaib Shahid, Muhammad Bilal Amir, Tian-Bo Ding, Tong-Xian Liu, Guy Smagghe and Yan Shi
Insects 2024, 15(12), 939; https://doi.org/10.3390/insects15120939 - 28 Nov 2024
Cited by 3 | Viewed by 2247
Abstract
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes [...] Read more.
Neuropeptide CCHamide-1 (abbreviated as CCHa1) is a recently discovered peptide that is present in many arthropods and is the ligand of the CCHa1R, a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of CCHa1/CCHa1R signaling in the pea aphid, Acyrthosiphon pisum, which is a notorious pest in agriculture. The docking analysis revealed that the CCHa1 peptide binds to its receptor CCHa1R through specific amino acid residues, which are critical for maintaining the structural and functional integrity of the peptide–receptor complex. Quantitative real-time reverse transcription-PCR (qRT-PCR) revealed the expression levels of CCHa1/CCHa1R transcripts in different development stages and different tissues, indicating that the CCHa1 expression was high in the first nymphal instar compared to the upcoming nymphal instars and adults, and was predominantly high in the brain. The CCHa1/CCHa1R transcript levels were significantly upregulated in starved aphids compared to fed aphids. Moreover, RNAi knockdown by the injection of dsRNA-CCHa1 and dsRNA-CCHa1R significantly reduced the corresponding expression of the target gene and reduced their food intake in adult aphids, as revealed by the electrical penetration graph results. CCHa1/CCHa1R-silencing also reduced the reproduction, but not the survival, in A. pisum. Our data demonstrated that CCHa1/CCHa1R play a role in the regulation of feeding in A. pisum, suggesting a role of the CCHa1 signaling pathway in the aphids relating to their nutritional status. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Graphical abstract

13 pages, 2116 KB  
Article
CCHamide-2 Signaling Regulates Food Intake and Metabolism in Gryllus bimaculatus
by Zhen Zhu, Maho Tsuchimoto and Shinji Nagata
Insects 2022, 13(4), 324; https://doi.org/10.3390/insects13040324 - 25 Mar 2022
Cited by 10 | Viewed by 3823
Abstract
Neuropeptides play vital roles in energy homeostasis in insects and other animals. Although the importance of the regulatory network of neuropeptides in feeding and metabolism has been illuminated, a complete understanding of the mechanisms has not been addressed as many factors are involved [...] Read more.
Neuropeptides play vital roles in energy homeostasis in insects and other animals. Although the importance of the regulatory network of neuropeptides in feeding and metabolism has been illuminated, a complete understanding of the mechanisms has not been addressed as many factors are involved in the regulation. CCHamide-2 is a newly identified brain-gut neuropeptide that regulates feeding behavior in several insect species including Drosophila melanogaster. However, little is known about the mechanisms controlling the feeding-related behavior and metabolic functions modulated by CCHamide-2 in other insects. In this study, we addressed the functions of CCHamide-2 in the two-spotted cricket, Gryllus bimaculatus, which was used as the experimental material to research the mechanisms of feeding and metabolism in this omnivorous insect species. Knockdown crickets by RNA interference against GbCCHamide-2R increased the amount of food intake, while injection of chemically synthetic GbCCHamide-2 peptide reduced the amount of food intake. Further, knockdown and peptide injection experiments revealed that GbCCHamide-2 signaling increased the concentrations of circulating lipids and carbohydrates, and the carbohydrate-rich diet increased the transcript levels of GbCCHa-2R. Moreover, GbCCHa-2 injection decreased the transcript level of Gbilp. By contrast, GbCCHamide-2 signaling did not affect nymphal growth or the transcript level of GbAKH, as well as feeding preferences. Taken together, CCHamide-2 signaling in G. bimaculatus regulates food intake associated with alterations in lipid and carbohydrate levels in hemolymph. Full article
(This article belongs to the Collection Insect Signals)
Show Figures

Figure 1

Back to TopTop