Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Breit-Wigner resonances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 823 KiB  
Article
Calculation of DC Stark Resonances for the Ammonia Molecule
by Patrik Pirkola and Marko Horbatsch
Molecules 2024, 29(7), 1543; https://doi.org/10.3390/molecules29071543 - 29 Mar 2024
Cited by 1 | Viewed by 955
Abstract
A model potential previously developed for the ammonia molecule is treated in a single-center partial-wave approximation in analogy with a self-consistent field method developed by Moccia. The latter was used in a number of collision studies. The model potential is used to calculate [...] Read more.
A model potential previously developed for the ammonia molecule is treated in a single-center partial-wave approximation in analogy with a self-consistent field method developed by Moccia. The latter was used in a number of collision studies. The model potential is used to calculate DC Stark resonance parameters, i.e., resonance positions and shifts using the exterior complex scaling method for the radial coordinate. Three molecular valence orbitals are investigated for fields along the three Cartesian coordinates, i.e., along the molecular axis and in two perpendicular directions. The work extends previous work on the planar-geometry water molecule for which non-monotonic shifts were observed. We find such non-monotonic shifts for fields along the molecular axis. For perpendicular fields, we report the splitting of the 1e orbitals into a fast- and a slow-ionizing orbital. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

11 pages, 408 KiB  
Article
Cancellation of the Sigma Mode in the Thermal Pion Gas by Quark Pauli Blocking
by David Blaschke, Alexandra Friesen and Yuri Kalinovsky
Symmetry 2023, 15(3), 711; https://doi.org/10.3390/sym15030711 - 13 Mar 2023
Viewed by 1594
Abstract
In this study, we calculate the pressure of the interacting pion gas using the Beth–Uhlenbeck approach to the relativistic virial expansion with Breit–Wigner phase shifts for the σ- and ϱ-meson resonances. The repulsive phase shift δ02 is taken from [...] Read more.
In this study, we calculate the pressure of the interacting pion gas using the Beth–Uhlenbeck approach to the relativistic virial expansion with Breit–Wigner phase shifts for the σ- and ϱ-meson resonances. The repulsive phase shift δ02 is taken from the quark interchange model of Barnes and Swanson, which is in very good agreement with the experimental data. In this work we show that the cancellation of the attractive (I = 0) and repulsive (I = 2) isospin channel contributions to the scalar ππ interaction in the low-energy region that is known for the vacuum phase shifts also takes place at a finite temperature. This happens despite the strong medium dependence of these phase shifts that enters our model by the temperature dependence of the σ-meson and constituent quark masses, because for these masses the relation Mσ(T)2mq(T) holds and the scattering length approximation is valid as long as the strong decay channel σππ is open. Exploiting the Nambu–Jona-Lasinio model for describing the dynamical breaking of chiral symmetry in the vacuum and its restoration at a finite temperature, we justify with our approach that the σ-meson should be absent from the hadron resonance gas description at low temperatures because the above cancellation holds. However, since this cancellation breaks down in the vicinity of the hadronization transition, where due to chiral symmetry restoration the decay channel σππ closes and the σ-meson becomes a good resonance, the latter should be included into the statistical model description of chemical freeze-out in heavy-ion collisions. Full article
Show Figures

Figure 1

37 pages, 5374 KiB  
Article
Analysis of Overlapping Resonances with Unitary Breit–Wigner and K-Matrix Approaches
by Victor Henner and Tatyana Belozerova
Particles 2022, 5(4), 451-487; https://doi.org/10.3390/particles5040035 - 27 Oct 2022
Viewed by 2391
Abstract
We compare two methods for obtaining the parameters of overlapping resonances. The convenience of the Breit–Wigner (BW) approach is based on the fact that it operates with the masses and widths of the states. For several resonances with the same quantum numbers, a [...] Read more.
We compare two methods for obtaining the parameters of overlapping resonances. The convenience of the Breit–Wigner (BW) approach is based on the fact that it operates with the masses and widths of the states. For several resonances with the same quantum numbers, a sum of BW functions violates the unitarity of the S-matrix. However, unitarity can be maintained by introducing interference phases to a BW implementation of scattering matrix formalism. A background can be added to the BW amplitudes in the standard way by using background phases. The K-matrix method is often used to analyze data related to several resonances with the same quantum numbers. It guarantees the unitarity of the S-matrix, but its parameters can be considered as resonance masses and widths only for well-spaced states. It also does not allow the separation of the resonant and background contributions in scattering amplitudes, which is critically important for determining parameters of wide resonances. To demonstrate the features of these methods, we consider several examples using simulated data. Full article
Show Figures

Figure 1

16 pages, 1697 KiB  
Article
Non-Monotonic dc Stark Shifts in the Rapidly Ionizing Orbitals of the Water Molecule
by Patrik Pirkola and Marko Horbatsch
Atoms 2022, 10(3), 84; https://doi.org/10.3390/atoms10030084 - 18 Aug 2022
Cited by 1 | Viewed by 1949
Abstract
We extend a previously developed model for the Stark resonances of the water molecule. The method employs a partial-wave expansion of the single-particle orbitals using spherical harmonics. To find the resonance positions and decay rates, we use the exterior complex scaling approach which [...] Read more.
We extend a previously developed model for the Stark resonances of the water molecule. The method employs a partial-wave expansion of the single-particle orbitals using spherical harmonics. To find the resonance positions and decay rates, we use the exterior complex scaling approach which involves the analytic continuation of the radial variable into the complex plane and yields a non-hermitian Hamiltonian matrix. The real part of the eigenvalues provides the resonance positions (and thus the Stark shifts), while the imaginary parts Γ/2 are related to the decay rates Γ, i.e., the full-widths at half-maximum of the Breit–Wigner resonances. We focus on the three outermost (valence) orbitals, as they dominate the ionization process. We find that for forces directed along the three Cartesian co-ordinates, the fastest ionizing orbital always displays a non-monotonic Stark shift. For the case of fields along the molecular axis we show results as a function of the number of spherical harmonics included (max=3,4). Comparison is made with total molecule resonance parameters from the literature obtained with Hartree–Fock and coupled cluster methods. Full article
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Photoejection from Various Systems and Radiative-Rate Coefficients
by Anand K. Bhatia
Atoms 2022, 10(1), 9; https://doi.org/10.3390/atoms10010009 - 19 Jan 2022
Cited by 2 | Viewed by 2800
Abstract
Photoionization or photodetachment is an important process. It has applications in solar- and astrophysics. In addition to accurate wave function of the target, accurate continuum functions are required. There are various approaches, like exchange approximation, method of polarized orbitals, close-coupling approximation, R-matrix formulation, [...] Read more.
Photoionization or photodetachment is an important process. It has applications in solar- and astrophysics. In addition to accurate wave function of the target, accurate continuum functions are required. There are various approaches, like exchange approximation, method of polarized orbitals, close-coupling approximation, R-matrix formulation, exterior complex scaling, the recent hybrid theory, etc., to calculate scattering functions. We describe some of them used in calculations of photodetachment or photoabsorption cross sections of ions and atoms. Comparisons of cross sections obtained using different approaches for the ejected electron are given. Furthermore, recombination rate coefficients are also important in solar- and astrophysics and they have been calculated at various electron temperatures using the Maxwell velocity distribution function. Approaches based on the method of polarized orbitals do not provide any resonance structure of photoabsorption cross sections, in spite of the fact that accurate results have been obtained away from the resonance region and in the resonance region by calculating continuum functions to calculate resonance widths using phase shifts in the Breit–Wigner formula for calculating resonance parameters. Accurate resonance parameters in the elastic cross sections have been obtained using the hybrid theory and they compare well with those obtained using the Feshbach formulation. We conclude that accurate results for photoabsorption cross sections can be obtained using the hybrid theory. Full article
(This article belongs to the Special Issue Photoionization of Atoms)
Show Figures

Figure 1

Back to TopTop