Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = Boruta-Mahalanobis system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5977 KiB  
Article
A Crack Characterization Method for Reinforced Concrete Beams Using an Acoustic Emission Technique
by Md Arafat Habib, Cheol Hong Kim and Jong-Myon Kim
Appl. Sci. 2020, 10(21), 7918; https://doi.org/10.3390/app10217918 - 8 Nov 2020
Cited by 18 | Viewed by 3666
Abstract
This study aims at characterizing crack types for reinforced concrete beams through the use of acoustic emission burst (AEB) features. The study includes developing a solid crack assessment indicator (CAI) accompanied by a crack detection method using the k-nearest neighbor (k-NN) algorithm that [...] Read more.
This study aims at characterizing crack types for reinforced concrete beams through the use of acoustic emission burst (AEB) features. The study includes developing a solid crack assessment indicator (CAI) accompanied by a crack detection method using the k-nearest neighbor (k-NN) algorithm that can successfully distinguish among the normal condition, micro-cracks, and macro-cracks (fractures) of concrete beam test specimens. Reinforced concrete (RC) beams undergo a three-point bending test, from which acoustic emission (AE) signals are recorded for further processing. From the recorded AE signals, crucial AEB features like the rise time, decay time, peak amplitude, AE energy, AE counts, etc. are extracted. The Boruta-Mahalanobis system (BMS) is utilized to fuse these features to provide us with a comprehensive and reliable CAI. The noise from the CAI is removed using the cumulative sum (CUMSUM) algorithm, and the final CAI plot is used to classify the three different conditions: normal, micro-cracks, and fractures using k-NN. The proposed method not only for the first time uses the entire time history to create a reliable CAI, but it can meticulously distinguish between micro-cracks and fractures, which previous works failed to deal with in a precise manner. Results obtained from the experiments display that the CAI built upon AEB features and BMS can detect cracks occurring in early stages, along with the gradually increasing damage in the beams. It also soundly outperforms the existing method by achieving an accuracy (classification) of 99.61%, which is 17.61% higher than the previously conducted research. Full article
(This article belongs to the Special Issue Health Structure Monitoring for Concrete Materials, Volume II)
Show Figures

Figure 1

Back to TopTop