Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Boom Clay formations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13038 KiB  
Article
Deciphering Nano-Resolution Petrological Characteristics of the Siliceous Shale at the Bottom of the Longmaxi Formation in the Zigong Area, Sichuan Basin, China: Deep-Water Microbialites
by Xiaofeng Zhou, Wei Guo, Xizhe Li, Pingping Liang, Junmin Yu and Chenglin Zhang
Minerals 2024, 14(10), 1020; https://doi.org/10.3390/min14101020 - 10 Oct 2024
Cited by 2 | Viewed by 764
Abstract
Three nano-resolution petrological microtextures were discovered in the siliceous shale at the bottom of the Longmaxi Formation in the Zigong area, Sichuan Basin. Based on observations of the occurrences of the minerals, organic matter, and organic matter pores in the different microtextures and [...] Read more.
Three nano-resolution petrological microtextures were discovered in the siliceous shale at the bottom of the Longmaxi Formation in the Zigong area, Sichuan Basin. Based on observations of the occurrences of the minerals, organic matter, and organic matter pores in the different microtextures and analysis of their relationships by means of nano-resolution petrological image datasets obtained using the Modular Automated Processing System (MAPS 3.18), the formation mechanism of the siliceous shale was studied. The results show that the strong modification of clay-rich sediments by a deep-water traction current was the basis for the formation of the siliceous shale. The clay-rich sediments were converted into flocculent sediments rich in oxygen and nutrients via agitation and transport by the deep-water traction current, providing space and a material basis for microbes to flourish. Under the continuous activity of the deep-water traction current, the clay-rich sediments were transformed into microbial mats, in which in situ terrigenous detrital quartz and feldspar, endogenous detrital calcite, authigenic dolomite, and dolomite ringed by ferrodolomite were scattered. During the burial stage, the microbial mats were lithified into the siliceous shale composed of three petrological microtextures. Microtexture I was mainly transformed by microbes. Microtexture II was formed via lithification of the residual clay-rich sediments. Microtexture III was composed of migratory organic matter filling hydrocarbon-generating pressurized fractures. Due to the universality of deep-water traction flow and the diversity of microbes in deep-water sediments, we firmly believe that more and more deep-water microbialites will be discovered worldwide through systematic characterization of nano-resolution petrology with the booming development of the shale gas industry. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

23 pages, 2706 KiB  
Article
Evaluation of a Long-Term Thermal Load on the Sealing Characteristics of Potential Sediments for a Deep Radioactive Waste Disposal
by Norbert Clauer, Miroslav Honty, Lander Frederickx and Christophe Nussbaum
Sustainability 2022, 14(21), 14004; https://doi.org/10.3390/su142114004 - 27 Oct 2022
Cited by 2 | Viewed by 1569
Abstract
An in situ and a batch heating experiment were applied on the fine-grained sediments of the Opalinus Clay from Mont Terri (Switzerland) and the Boom Clay of Mol (Belgium), both being currently studied as potential host formations for deep nuclear waste disposal. The [...] Read more.
An in situ and a batch heating experiment were applied on the fine-grained sediments of the Opalinus Clay from Mont Terri (Switzerland) and the Boom Clay of Mol (Belgium), both being currently studied as potential host formations for deep nuclear waste disposal. The purpose was here to test the impact of a 100 °C temperature rise that is expected to be produced by nuclear waste in deep repositories. The experiment on the Opalinus Clay mimicked real conditions with 8-months operating heating devices stored in core drillings into the rock. The comparison of the major, trace, rare-earth elemental contents and of the whole-rock K-Ar data before and after heating shows only a few variations beyond analytical uncertainty. However, the necessary drillings for collecting control samples after the experiment added an unexpected uncertainty to the analyses due to the natural heterogeneity of the rock formation, even if very limited. To overcome this aspect, Boom Clay ground material was subjected to a batch experiment in sealed containers during several years. The drawback being here the fact that controls were limited with, however, similar reproducible results that also suggest limited elemental transfers from rock size into that of the <2 μm material, unless the whole rocks lost more elements than the fine fractions. The analyses generated by the two experiments point to identical conclusions: a visible degassing and dewatering of the minerals that did not induce a visible alteration/degradation of the host-rock safety characteristics after the short-term temperature increase. Full article
(This article belongs to the Special Issue Nuclear Waste Management and Sustainability)
Show Figures

Figure 1

Back to TopTop