Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = BnFAE1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2531 KiB  
Article
Enhancing Erucic Acid and Wax Ester Production in Brassica carinata through Metabolic Engineering for Industrial Applications
by Misteru Tesfaye, Eu Sheng Wang, Tileye Feyissa, Cornelia Herrfurth, Teklehaimanot Haileselassie, Selvaraju Kanagarajan, Ivo Feussner and Li-Hua Zhu
Int. J. Mol. Sci. 2024, 25(12), 6322; https://doi.org/10.3390/ijms25126322 - 7 Jun 2024
Cited by 1 | Viewed by 1996
Abstract
Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to [...] Read more.
Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. ‘Derash’ was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop. Full article
(This article belongs to the Special Issue Power Up Plant Genetic Research with Genomic Data 2.0)
Show Figures

Figure 1

9 pages, 1130 KiB  
Article
CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus
by Jianghua Shi, Xiyuan Ni, Jixiang Huang, Ying Fu, Tanliu Wang, Huasheng Yu and Yaofeng Zhang
Genes 2022, 13(10), 1681; https://doi.org/10.3390/genes13101681 - 20 Sep 2022
Cited by 22 | Viewed by 3623
Abstract
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have [...] Read more.
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70–80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait. Full article
(This article belongs to the Special Issue Discovery and Exploration of Functional Genes in Oil Crops)
Show Figures

Graphical abstract

Back to TopTop