Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Bmal1 silencing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5019 KiB  
Article
Core Molecular Clock Factors Regulate Osteosarcoma Stem Cell Survival and Behavior via CSC/EMT Pathways and Lipid Droplet Biogenesis
by Sukanya Bhoumik and Yool Lee
Cells 2025, 14(7), 517; https://doi.org/10.3390/cells14070517 - 31 Mar 2025
Cited by 1 | Viewed by 1065
Abstract
The circadian clock, an intrinsic 24 h cellular timekeeping system, regulates fundamental biological processes, including tumor physiology and metabolism. Cancer stem cells (CSCs), a subpopulation of cancer cells with self-renewal and tumorigenic capacities, are implicated in tumor initiation, recurrence, and metastasis. Despite growing [...] Read more.
The circadian clock, an intrinsic 24 h cellular timekeeping system, regulates fundamental biological processes, including tumor physiology and metabolism. Cancer stem cells (CSCs), a subpopulation of cancer cells with self-renewal and tumorigenic capacities, are implicated in tumor initiation, recurrence, and metastasis. Despite growing evidence for the circadian clock’s involvement in regulating CSC functions, its precise regulatory mechanisms remain largely unknown. Here, using a human osteosarcoma (OS) model (143B), we have shown that core molecular clock factors are critical for OS stem cell survival and behavior via direct modulation of CSC and lipid metabolic pathways. In single-cell-derived spheroid formation assays, 143B OS cells exhibited robust spheroid-forming capacity under 3D culture conditions. Furthermore, siRNA-mediated depletion of core clock components (i.e., BMAL1, CLOCK, CRY1/2, PER1/2)—essential positive and negative elements of the circadian clock feedback loop—significantly reduced spheroid formation in 143B CSCs isolated from in vivo OS xenografts. In contrast, knockdown of the secondary clock-stabilizing factor genes NR1D1 and NR1D2 had little effect. We also found that knockdown of BMAL1, CLOCK, or CRY1/2 markedly impaired the migration and invasion capacities of 143B CSCs. At the molecular level, silencing of BMAL1, CLOCK, or CRY1/2 distinctly altered the expression of genes associated with stem cell properties and the epithelial–mesenchymal transition (EMT) in 143B CSCs. In addition, disruption of BMAL1, CLOCK, or CRY1/2 expression significantly reduced lipid droplet formation by downregulating the expression of genes involved in lipogenesis (e.g., DGAT1, FASN, ACSL4, PKM2, CHKA, SREBP1), which are closely linked to CSC/EMT processes. Furthermore, transcriptomic analysis of human OS patient samples revealed that compared with other core clock genes, CRY1 was highly expressed in OS tumors relative to controls, and its expression exhibited strong positive correlations with patient prognosis, survival, and LD biogenesis gene expression. These findings highlight the critical role of the molecular circadian clock in regulating CSC properties and metabolism, underscoring the therapeutic potential of targeting the core clock machinery to enhance OS treatment outcomes. Full article
(This article belongs to the Special Issue The Role of Stem Cells and Circadian Clock in Cancer Immunotherapy)
Show Figures

Figure 1

20 pages, 4946 KiB  
Article
A Potential Effect of Circadian Rhythm in the Delivery/Therapeutic Performance of Paclitaxel–Dendrimer Nanosystems
by Tânia Albuquerque, Ana Raquel Neves, Milan Paul, Swati Biswas, Elena Vuelta, Ignacio García-Tuñón, Manuel Sánchez-Martin, Telma Quintela and Diana Costa
J. Funct. Biomater. 2023, 14(7), 362; https://doi.org/10.3390/jfb14070362 - 11 Jul 2023
Cited by 2 | Viewed by 2797
Abstract
The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery [...] Read more.
The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient’s circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1—the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8. Full article
(This article belongs to the Special Issue Advanced Materials Applied in Drug Delivery)
Show Figures

Figure 1

14 pages, 3572 KiB  
Article
Dihydroisotanshinone I and BMAL-SIRT1 Pathway in an In Vitro 6-OHDA-Induced Model of Parkinson’s Disease
by Hui-Chen Su, Yuan-Ting Sun, Ming-Yu Yang, Ching-Yuan Wu and Cheng-Ming Hsu
Int. J. Mol. Sci. 2023, 24(13), 11088; https://doi.org/10.3390/ijms241311088 - 4 Jul 2023
Cited by 8 | Viewed by 2540
Abstract
Danshen has been widely used for the treatment of central nervous system diseases. We investigated the effect of dihydroisotanshinone I (DT), a compound extracted from Danshen, as well as the corresponding mechanisms in an in vitro-based 6-OHDA-induced Parkinson’s disease (PD) model. SH-SY5Y human [...] Read more.
Danshen has been widely used for the treatment of central nervous system diseases. We investigated the effect of dihydroisotanshinone I (DT), a compound extracted from Danshen, as well as the corresponding mechanisms in an in vitro-based 6-OHDA-induced Parkinson’s disease (PD) model. SH-SY5Y human neuroblastoma cell lines were pretreated with 6-hydroxydopamine (6-OHDA) and challenged with DT. Subsequently, the cell viability and levels of reactive oxygen species (ROS) and caspase-3 were analyzed. The effect of DT on the 6-OHDA-treated SH-SY5Y cells and the expression of the core circadian clock genes were measured using a real-time quantitative polymerase chain reaction. Our results indicated that DT attenuated the 6-OHDA-induced cell death in the SH-SY5Y cells and suppressed ROS and caspase-3. Moreover, DT reversed both the RNA and protein levels of BMAL1 and SIRT1 in the 6-OHDA-treated SH-SY5Y cells. Additionally, the SIRT1 inhibitor attenuated the effect of DT on BMAL1 and reduced the cell viability. The DT and SIRT1 activators activated SIRT1 and BMAL1, and then reduced the death of the SH-SY5Y cells damaged by 6-OHDA. SIRT1 silencing was enhanced by DT and resulted in a BMAL1 downregulation and a reduction in cell viability. In conclusion, our investigation suggested that DT reduces cell apoptosis, including an antioxidative effect due to a reduction in ROS, and regulates the circadian genes by enhancing SIRT1 and suppressing BMAL1. DT may possess novel therapeutic potential for PD in the future, but further in vivo studies are still needed. Full article
Show Figures

Figure 1

14 pages, 5857 KiB  
Article
Downregulation of Bmal1 Expression in Celiac Ganglia Protects against Hepatic Ischemia-Reperfusion Injury
by Jiarui Feng, Lilong Zhang, Enfu Xue, Zhendong Qiu, Ning Hu, Kunpeng Wang, Yingru Su and Weixing Wang
Biomolecules 2023, 13(4), 713; https://doi.org/10.3390/biom13040713 - 21 Apr 2023
Cited by 1 | Viewed by 2702
Abstract
Hepatic ischemia-reperfusion injury (HIRI) significantly contributes to liver dysfunction following liver transplantation and hepatectomy. However, the role of the celiac ganglion (CG) in HIRI remains unclear. Adeno-associated virus was used to silence Bmal1 expression in the CG of twelve beagles that were randomly [...] Read more.
Hepatic ischemia-reperfusion injury (HIRI) significantly contributes to liver dysfunction following liver transplantation and hepatectomy. However, the role of the celiac ganglion (CG) in HIRI remains unclear. Adeno-associated virus was used to silence Bmal1 expression in the CG of twelve beagles that were randomly assigned to the Bmal1 knockdown group (KO-Bmal1) and the control group. After four weeks, a canine HIRI model was established, and CG, liver tissue, and serum samples were collected for analysis. The virus significantly downregulated Bmal1 expression in the CG. Immunofluorescence staining confirmed a lower proportion of c-fos+ and NGF+ neurons in TH+ cells in the KO-Bmal1 group than in the control group. The KO-Bmal1 group exhibited lower Suzuki scores and serum ALT and AST levels than the control group. Bmal1 knockdown significantly reduced liver fat reserve, hepatocyte apoptosis, and liver fibrosis, and it increased liver glycogen accumulation. We also observed that Bmal1 downregulation inhibited the hepatic neurotransmitter norepinephrine, neuropeptide Y levels, and sympathetic nerve activity in HIRI. Finally, we confirmed that decreased Bmal1 expression in CG reduces TNF-α, IL-1β, and MDA levels and increases GSH levels in the liver. The downregulation of Bmal1 expression in CG suppresses neural activity and improves hepatocyte injury in the beagle model after HIRI. Full article
(This article belongs to the Special Issue The Advanced Research on Animal Nutrition and by-Product Treatment)
Show Figures

Figure 1

15 pages, 2588 KiB  
Article
BMAL1 Promotes Valvular Interstitial Cells’ Osteogenic Differentiation through NF-κ B/AKT/MAPK Pathway
by Yefan Jiang, Song Wang, Wenfeng Lin, Jiaxi Gu, Geng Li and Yongfeng Shao
J. Cardiovasc. Dev. Dis. 2023, 10(3), 110; https://doi.org/10.3390/jcdd10030110 - 6 Mar 2023
Cited by 4 | Viewed by 2876
Abstract
Objectives: Calcific aortic valve disease (CAVD) is most common in the aging population and is without effective medical treatments. Brain and muscle ARNT-like 1 (BMAL1) is related to calcification. It has unique tissue-specific characteristics and plays different roles in different tissues’ calcification processes. [...] Read more.
Objectives: Calcific aortic valve disease (CAVD) is most common in the aging population and is without effective medical treatments. Brain and muscle ARNT-like 1 (BMAL1) is related to calcification. It has unique tissue-specific characteristics and plays different roles in different tissues’ calcification processes. The purpose of the present study is to explore the role of BMAL1 in CAVD. Methods: The protein levels of BMAL1 in normal and calcified human aortic valves and valvular interstitial cells (VICs) isolated from normal and calcified human aortic valves were checked. HVICs were cultured in osteogenic medium as an in vitro model, and BMAL1 expression and location were detected. TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA were applied to detect the mechanism underlying the source of BMAL1 during HVICs’ osteogenic differentiation. ChIP was applied to check whether BMAL1 could directly interact with the runx2 primer CPG region, and the expression of key proteins involved in the TNF signaling pathway and NF-κ B pathway was tested after silencing BMAL1. Results: In this study, we found that BMAL1 expression was elevated in calcified human aortic valves and VICs isolated from calcified human aortic valves. Osteogenic medium could promote BMAL1 expression in HVICs and the knockdown of BMAL1 induced the inhibition of HVICs’ osteogenic differentiation. Furthermore, the osteogenic medium promoting BMAL1 expression could be blocked by TGF-β and RhoA/ROCK inhibitors and RhoA-siRNA. Meanwhile, BMAL1 could not bind with the runx2 primer CPG region directly, but knockdown of BMAL1 led to decreased levels of P-AKT, P-IκBα, P-p65 and P-JNK. Conclusions: Osteogenic medium could promote BMAL1 expression in HVICs through the TGF-β/RhoA/ROCK pathway. BMAL1 could not act as a transcription factor, but functioned through the NF-κ B/AKT/MAPK pathway to regulate the osteogenic differentiation of HVICs. Full article
(This article belongs to the Section Basic and Translational Cardiovascular Research)
Show Figures

Figure 1

20 pages, 4315 KiB  
Article
Codon Usage and Context Analysis of Genes Modulated during SARS-CoV-2 Infection and Dental Inflammation
by Rekha Khandia, Megha Katare Pandey, Azmat Ali Khan, Igor Vladimirovich Rzhepakovsky, Pankaj Gurjar and Mohmed Isaqali Karobari
Vaccines 2022, 10(11), 1874; https://doi.org/10.3390/vaccines10111874 - 6 Nov 2022
Cited by 7 | Viewed by 2412
Abstract
The overexpression of SARS-CoV-2 primary receptors and co-receptors (ACE2, TMPRSS2, FURIN, and CD147) enhance the likeliness of SARS-CoV-2 infection. The genes for same receptors are overexpressed in the periodontal tissues of periodontitis patients. On the other hand, BMAL1 [...] Read more.
The overexpression of SARS-CoV-2 primary receptors and co-receptors (ACE2, TMPRSS2, FURIN, and CD147) enhance the likeliness of SARS-CoV-2 infection. The genes for same receptors are overexpressed in the periodontal tissues of periodontitis patients. On the other hand, BMAL1 is recognized to play a crucial role in regulating pulmonary inflammation and enhancing susceptibility to viral infection. Silenced BMAL1 disrupts circadian transcriptional regulations, enhances vulnerability to SARS-CoV-2 infections, and may trigger the further production of TNF-α and other pro-inflammatory cytokines that propagate the cytokine storm and exacerbate periodontal inflammation. Therefore ACE2, TMPRSS2, FURIN, CD147, and BMAL1 are the crossroads between SARS-CoV-2 and Periodontitis genes. The enhanced expression of ACE2, TMPRSS2, FURIN, and CD147 and the diminished expression of BMAL1 may be a strategy to check both ailments simultaneously. In gene manipulation techniques, oligos are introduced, which contain all the necessary information to manipulate gene expression. The data are derived from the studies on genes’ molecular patterns, including nucleotide composition, dinucleotide patterns, relative synonymous codon usage, codon usage bias, codon context, and rare and abundant codons. Such information may be used to manipulate the overexpression and underexpression of the genes at the time of SARS-CoV-2 infection and periodontitis to mitigate both ailments simultaneously; it can be explored to uncover possible future treatments. Full article
(This article belongs to the Section Epidemiology and Vaccination)
Show Figures

Figure 1

Back to TopTop