Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Blanding’s turtle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2417 KiB  
Article
Conservation Genetic Analysis of Blanding’s Turtles across Ohio, Indiana, and Michigan
by Daniel Guinto, Matthew Cross, Gregory Lipps, Yuman Lee, Bruce Kingsbury, Daniel Earl, Connor Dempsey, Jessica Hinson and Mark Jordan
Diversity 2023, 15(5), 668; https://doi.org/10.3390/d15050668 - 14 May 2023
Cited by 2 | Viewed by 3471
Abstract
The Blanding’s Turtle (Emydoidea blandingii) is a species in need of conservation across much of its geographic range. A key aspect to conserving a species is understanding the genetic diversity and population structure across the landscape. Several researchers have focused on [...] Read more.
The Blanding’s Turtle (Emydoidea blandingii) is a species in need of conservation across much of its geographic range. A key aspect to conserving a species is understanding the genetic diversity and population structure across the landscape. Several researchers have focused on E. blandingii genetic diversity in the northeastern United States, Canada, and parts of the Midwestern United States; however, little investigation has been carried out on localities within the Great Lakes region of Indiana, Michigan, and Ohio. Understanding genetic trends within this region will assist with conservation planning by documenting levels of genetic variation within and among localities and developing hypotheses that have led to the observed patterns. We used 14 microsatellite loci to characterize the genetic diversity of E. blandingii in 16 localities in Indiana, Ohio, and southeast Michigan (with one northwestern locality). Overall, genetic diversity within localities tended to be high and little differentiation was observed among sample localities. No consistent evidence of bottlenecks was detected, and effective population size (Ne) estimates were generally high, but likely biased by sample size. A minimum of two clusters, and as many as seven clusters in a hierarchical analysis, were identified using three methods for grouping individuals (STRUCTURE, TESS3r, and sPCA). A correlation between geographic distance and genetic differentiation (isolation by distance) was observed. The long lifespan and historic gene flow of E. blandingii is likely responsible for the observed genetic diversity and lack of differentiation between localities. This should not suggest that populations are secure in the Great Lakes Region. Modeling aimed at estimating future genetic variation in populations under realistic demographic scenarios indicates that many localities in the region are likely to be vulnerable to genetic loss in the next 200 years. Full article
(This article belongs to the Special Issue Reproductive Biology and Molecular Ecology of Turtles)
Show Figures

Figure 1

26 pages, 1376 KiB  
Article
Blanding’s Turtle (Emydoidea blandingii) Potential Habitat Mapping Using Aerial Orthophotographic Imagery and Object Based Classification
by Rebecca Barker and Douglas J. King
Remote Sens. 2012, 4(1), 194-219; https://doi.org/10.3390/rs4010194 - 11 Jan 2012
Cited by 14 | Viewed by 10845
Abstract
Blanding’s turtle (Emydoidea blandingii) is a threatened species under Canada’s Species at Risk Act. In southern Québec, field based inventories are ongoing to determine its abundance and potential habitat. The goal of this research was to develop means for mapping of [...] Read more.
Blanding’s turtle (Emydoidea blandingii) is a threatened species under Canada’s Species at Risk Act. In southern Québec, field based inventories are ongoing to determine its abundance and potential habitat. The goal of this research was to develop means for mapping of potential habitat based on primary habitat attributes that can be detected with high-resolution remotely sensed imagery. Using existing spring leaf-off 20 cm resolution aerial orthophotos of a portion of Gatineau Park where some Blanding’s turtle observations had been made, habitat attributes were mapped at two scales: (1) whole wetlands; (2) within wetland habitat features of open water, vegetation (used for camouflage and thermoregulation), and logs (used for spring sun-basking). The processing steps involved initial pixel-based classification to eliminate most areas of non-wetland, followed by object-based segmentations and classifications using a customized rule sequence to refine the wetland map and to map the within wetland habitat features. Variables used as inputs to the classifications were derived from the orthophotos and included image brightness, texture, and segmented object shape and area. Independent validation using field data and visual interpretation showed classification accuracy for all habitat attributes to be generally over 90% with a minimum of 81.5% for the producer’s accuracy of logs. The maps for each attribute were combined to produce a habitat suitability map for Blanding’s turtle. Of the 115 existing turtle observations, 92.3% were closest to a wetland of the two highest suitability classes. High-resolution imagery combined with object-based classification and habitat suitability mapping methods such as those presented provide a much more spatially explicit representation of detailed habitat attributes than can be obtained through field work alone. They can complement field efforts to document and track turtle activities and can contribute to species inventory planning, conservation, and management. Full article
Show Figures

Graphical abstract

Back to TopTop