Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = BisBAL NPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5120 KB  
Article
A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells
by Jesús Alejandro Torres-Betancourt, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, Sergio Eduardo Nakagoshi-Cepeda, Katiushka Arevalo-Niño, María Argelia Akemi Nakagoshi-Cepeda and Claudio Cabral-Romero
J. Funct. Biomater. 2024, 15(10), 309; https://doi.org/10.3390/jfb15100309 - 16 Oct 2024
Cited by 3 | Viewed by 1974
Abstract
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal [...] Read more.
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal effects, were evaluated using a breast cancer cell line and methicillin-susceptible and resistant Staphylococcus aureus (MRSA). Drug-free Tecoflex™ EMs and Tecoflex™ EMs-BisBAL NPs had similar fiber diameters of 4.65 ± 1.42 µm and 3.95 ± 1.32 µm, respectively. Drug-free Tecoflex™ EMs did not negatively impact a human fibroblast culture, indicating that the vehicle is biocompatible. Tecoflex™ EMs-BisBAL NPs increased 94% more in size than drug-free Tecoflex™ EMs, indicating that the BisBAL NPs enhanced hydration capacity. Tecoflex™ EMs-BisBAL NPs were highly bactericidal against both methicillin-susceptible S. aureus and MRSA clinical isolates, inhibiting their growth by 93.11% and 61.70%, respectively. Additionally, Tecoflex™ EMs-BisBAL NPs decreased the viability of MCF-7 tumor cells by 86% after 24 h exposure and 70.1% within 15 min. Regarding the mechanism of action of Tecoflex™ EMs-BisBAL NPs, it appears to disrupt the tumor cell membrane. In conclusion, Tecoflex™ EMs-BisBAL NPs constitute an innovative low-cost drug delivery system for human breast cancer and postoperative wound infections. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

15 pages, 6901 KB  
Article
Vaginal Ovule Loaded with Bismuth Lipophilic Nanoparticles and Cetylpyridinium Chloride Inhibits Human Cervical Carcinoma and Candida albicans Growth
by Claudio Cabral-Romero, Rene Hernández-Delgadillo, Jesús Alejandro Torres-Betancourt, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Juan Manuel Solis-Soto, Irene Meester, Nayely Pineda-Aguilar, Sergio Eduardo Nakagoshi-Cepeda, Juan Valerio Cauich-Rodríguez and María Argelia Akemi Nakagoshi-Cepeda
J. Funct. Biomater. 2024, 15(8), 206; https://doi.org/10.3390/jfb15080206 - 25 Jul 2024
Cited by 2 | Viewed by 2755
Abstract
Bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) are antineoplastic and antimicrobial in vitro. As a next pre-clinical step, a clinically viable dosage form for vaginal application was developed. Compendial pharmacopeial tests (mass uniformity, disintegration, and compressive mechanics) and inductively coupled plasma [...] Read more.
Bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) are antineoplastic and antimicrobial in vitro. As a next pre-clinical step, a clinically viable dosage form for vaginal application was developed. Compendial pharmacopeial tests (mass uniformity, disintegration, and compressive mechanics) and inductively coupled plasma optical emission spectroscopy were conducted on in-house developed glycerinated gelatin (60:15 v/w) vaginal ovules containing BisBAL NP-CPC. The antimycotic activity of BisBAL NP-CPC vaginal ovules was analyzed using disk diffusion and cell viability XTT assays. The antitumor properties of BisBAL NP-CPC vaginal ovules were assessed by cell viability MTT tests. BisBAL NP-CPC and drug-free vaginal ovules deposited into ex vivo porcine vaginas disaggregated without signs of adverse cytotoxicity within the timespan of clinical efficacy. BisBAL NP-CPC vaginal ovules demonstrated antifungal efficacy comparable to miconazole: C. albicans growth inhibition haloes in diffusion tests were 23 ± 0.968 mm (n = 3) for BisBAL NP-CPC and 20.35 ± 0.899 mm (n = 3) for miconazole. Likewise, BisBAL NP-CPC vaginal ovules reduced HeLa cell growth by 81%, outperforming the clinical reference of 500 μM 5-fluouracil, which induced a 70% growth inhibition. BisBAL NP-CPC incorporated into glycerinated gelatin vaginal ovules constitute an innovative drug delivery system for topical antimycotic and anti-cervical carcinoma treatments. Full article
(This article belongs to the Section Biomaterials for Cancer Therapies)
Show Figures

Figure 1

Back to TopTop