Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Barmah Forest virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7055 KB  
Article
Arbovirus Transmission in Australia from 2002 to 2017
by Elvina Viennet, Francesca D. Frentiu, Emilie McKenna, Flavia Torres Vasconcelos, Robert L. P. Flower and Helen M. Faddy
Biology 2024, 13(7), 524; https://doi.org/10.3390/biology13070524 - 15 Jul 2024
Cited by 1 | Viewed by 2688
Abstract
Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause [...] Read more.
Arboviruses pose a significant global public health threat, with Ross River virus (RRV), Barmah Forest virus (BFV), and dengue virus (DENV) being among the most common and clinically significant in Australia. Some arboviruses, including those prevalent in Australia, have been reported to cause transfusion-transmitted infections. This study examined the spatiotemporal variation of these arboviruses and their potential impact on blood donation numbers across Australia. Using data from the Australian Department of Health on eight arboviruses from 2002 to 2017, we retrospectively assessed the distribution and clustering of incidence rates in space and time using Geographic Information System mapping and space–time scan statistics. Regression models were used to investigate how weather variables, their lag months, space, and time affect case and blood donation counts. The predictors’ importance varied with the spatial scale of analysis. Key predictors were average rainfall, minimum temperature, daily temperature variation, and relative humidity. Blood donation number was significantly associated with the incidence rate of all viruses and its interaction with local transmission of DENV, overall. This study, the first to cover eight clinically relevant arboviruses at a fine geographical level in Australia, identifies regions at risk for transmission and provides valuable insights for public health intervention. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

13 pages, 250 KB  
Article
Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results
by Joanne Kizu, Melissa Graham and Wenjun Liu
Viruses 2024, 16(3), 384; https://doi.org/10.3390/v16030384 - 29 Feb 2024
Cited by 3 | Viewed by 2319
Abstract
To evaluate the frequency of errors in the diagnosis of medical laboratory-diagnosed Chikungunya virus (CHIKV) infections in Australia, we studied 42 laboratory-diagnosed CHIKV serum samples from one Queensland medical laboratory by ELISA IgG/IgM and measured the specific neutralization antibodies (Nab) against Barmah Forest [...] Read more.
To evaluate the frequency of errors in the diagnosis of medical laboratory-diagnosed Chikungunya virus (CHIKV) infections in Australia, we studied 42 laboratory-diagnosed CHIKV serum samples from one Queensland medical laboratory by ELISA IgG/IgM and measured the specific neutralization antibodies (Nab) against Barmah Forest virus (BFV), CHIKV and Ross River virus (RRV). The sero-positivity rates for the sera were as follows: anti-BFV IgG+ 19% (8/42), IgM+ 2.4% (1/42) and Nab+ 16.7% (7/42); anti-CHIKV IgG+ 90.5% (38/42), IgM+ 21.4% (9/42) and Nab+ 90.5% (38/42); anti-RRV IgG+ 88.1% (37/42), IgM+ 28.6% (12/42) and Nab+ 83.2% (35/42), respectively. Among the samples with multiple antibody positivity, 2.4% (1/42) showed triple ELISA IgM+, and 14.3% (6/42) exhibited double IgM RRV+CHIKV+; 9.5% (4/42) showed triple IgG+, 76.2% (32/42) displayed double IgG RRV+CHIKV+, 4.8% (2/42) showed IgG BFV+RRV+ and 4.8% (2/42) showed IgG BFV++CHIKV+; and 9.5% (4/42) showed triple Nab+ and 69% (29/42) exhibited double Nab RRV+CHIKV+, respectively. Our analysis of the single-virus infection control Nab results suggested no cross-neutralization between RRV and BFV, and only mild cross-neutralization between CHIKV and RRV, BFV and CHIKV, all with a ≥4-fold Nab titre ratio difference between the true virus infection and cross-reactivity counterpart virus. Subsequently, we re-diagnosed these 42 patients as 1 BFV+, 8 CHIKV+ and 23 RRV+ single-virus infections, along with five RRV+/BFV+ and four RRV+/CHIKV+ double infections, and one possible RRV+/BFV+ or RRV+CHIKV+, respectively. These findings suggests that a substantial proportion of medically attended RRV and BFV infections were misdiagnosed as CHIKV infections, highlighting the imperative need for diagnostic laboratory tests capable of distinguishing between CHIKV infections and actively co-circulating RRV and BFV. For a correct diagnosis, it is crucial to consider reliable diagnostic methods such as the neutralization assay to exclude RRV and BFV. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research)
14 pages, 1109 KB  
Article
Prevalence of Barmah Forest Virus, Chikungunya Virus and Ross River Virus Antibodies among Papua New Guinea Military Personnel before 2019
by Joanne G. Kizu, Melissa Graham, Richard Grant, Fiona McCallum, Brady McPherson, Alyson Auliff, Peter Kaminiel and Wenjun Liu
Viruses 2023, 15(2), 394; https://doi.org/10.3390/v15020394 - 30 Jan 2023
Cited by 4 | Viewed by 3137
Abstract
Barmah Forest virus (BFV), Chikungunya virus (CHIKV) and Ross River virus (RRV) belong to the Alphavirus genus of the family Togaviridae. All three virus infections have been reported in Papua New Guinea (PNG) previously, but the exact prevalence and distribution of these three [...] Read more.
Barmah Forest virus (BFV), Chikungunya virus (CHIKV) and Ross River virus (RRV) belong to the Alphavirus genus of the family Togaviridae. All three virus infections have been reported in Papua New Guinea (PNG) previously, but the exact prevalence and distribution of these three alphaviruses in PNG has not been established. Sera collected from 204 PNG Military Personnel (PNGMP) study participants in April 2019 was tested for the presence of anti-BFV, anti-CHIKV and anti-RRV immunoglobulin G (IgG) antibodies using commercially available enzyme-linked immunosorbent assay (ELISA) IgG detection kits, as well as for specific neutralizing antibodies (NAb) against individual viruses. Overall, sero-positivity of the sera was anti-BFV IgG 12.3% (25/204), anti-BFV NAb 8.3% (17/204); anti-CHIKV IgG 47.1% (96/204), anti-CHIKV NAb 34.8% (71/204); and anti-RRV IgG 93.1% (190/204), anti-RRV NAb 56.4% (115/204), respectively. Of the 137/204 participants that were Nab-positive for at least one virus, we identified 4 BFV, 40 CHIKV and 73 RRV single infections, and 9 RRV+CHIKV and 11 BFV+RRV double infections. The lower proportion of NAb sero-positive compared to the ELISA IgG sero-positive assay samples suggests that the currently available commercial ELISA detection kits for these three alphaviruses may not be suitable for diagnostic/surveillance purposes in endemic areas such as PNG, due to serological cross-reactivity among these three alphaviruses. Laboratory testing using known positive control sera indicated no cross-neutralization between BFV and RRV; however, some RRV or BFV single infection human sera demonstrated low-level cross-neutralization against CHIKV (the ratio of RRV/CHIKV NAb titers or BFV/CHIKV ≥ 4). Our preliminary results indicate that the majority of PNGMP have previously been exposed to RRV, with mild exposure to CHIKV and low-level exposure to BFV, suggesting that multiple alphaviruses have been circulating among PNGMP. The transmission landscapes of these three alphaviruses across PNG should be prioritized for further investigation, including identification of specific vectors and hosts that mediate human spillover in order to mitigate future outbreaks. Ongoing education regarding precautionary and protective measures are needed to better protect individuals who travel to PNG. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

12 pages, 1504 KB  
Article
Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018–2020)
by Ka Y. Yuen, Joerg Henning, Melodie D. Eng, Althea S. W. Wang, Martin F. Lenz, Karen M. Caldwell, Mitchell P. Coyle and Helle Bielefeldt-Ohmann
Viruses 2022, 14(9), 1846; https://doi.org/10.3390/v14091846 - 23 Aug 2022
Cited by 5 | Viewed by 3029
Abstract
The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in [...] Read more.
The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Australia. In this study, serological surveys for multiple alphaviruses were performed on samples taken from 622 horses across two horse populations (racehorses and horses residing on The University of Queensland (UQ) campus) in Queensland using the gold standard virus neutralization test. As is the case in humans across Australia, Ross River virus (RRV) is the most common arbovirus infection in horses, followed by Barmah Forest virus, with an overall apparent seroprevalence of 48.6% (302/622) and 4.3% (26/607), respectively. Horses aged over 6 years old (OR 1.86, p = 0.01) and residing at UQ (OR 5.8, p < 0.001) were significantly associated with seroconversion to RRV. A significant medium correlation (r = 0.626, p < 0.001) between RRV and Getah virus (GETV) neutralizing antibody titers was identified. Collectively, these results advance the current epidemiological knowledge of arbovirus exposure in a susceptible host in Australia. The potential use of horses as sentinels for arbovirus monitoring should be considered. Furthermore, since GETV is currently exotic to Australia, antibodies cross-reactivity between RRV and GETV should be further investigated for cross-protection, which may also help to inform vaccine developments. Full article
(This article belongs to the Special Issue Arbovirus Epidemiology & Control)
Show Figures

Figure 1

22 pages, 2814 KB  
Review
Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review
by Oselyne T. W. Ong, Eloise B. Skinner, Brian J. Johnson and Julie M. Old
Viruses 2021, 13(2), 265; https://doi.org/10.3390/v13020265 - 9 Feb 2021
Cited by 17 | Viewed by 6804
Abstract
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. [...] Read more.
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and challenges in assessing the impacts to non-human vertebrate species, makes this an important topic to periodically review. Full article
(This article belongs to the Special Issue Emerging Wildlife Viral Diseases)
Show Figures

Graphical abstract

20 pages, 3336 KB  
Article
Phylogenetic and Timescale Analysis of Barmah Forest Virus as Inferred from Genome Sequence Analysis
by Alice Michie, Timo Ernst, I-Ly Joanna Chua, Michael D. A. Lindsay, Peter J. Neville, Jay Nicholson, Andrew Jardine, John S. Mackenzie, David W. Smith and Allison Imrie
Viruses 2020, 12(7), 732; https://doi.org/10.3390/v12070732 - 6 Jul 2020
Cited by 13 | Viewed by 5099
Abstract
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other [...] Read more.
Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other major Australian alphavirus. Currently, just four BFV whole-genome sequences are available with no genome-scale phylogeny in existence to robustly characterise genetic diversity. Thirty novel genome sequences were derived for this study, for a final 34-taxon dataset sampled over a 44 year period. Three distinct BFV genotypes were characterised (G1–3) that have circulated in Australia and Papua New Guinea (PNG). Evidence of spatio-temporal co-circulation of G2 and G3 within regions of Australia was noted, including in the South West region of Western Australia (WA) during the first reported disease outbreaks in the state’s history. Compared with RRV, the BFV population appeared more stable with less frequent emergence of novel lineages. Preliminary in vitro assessment of RRV and BFV replication kinetics found that RRV replicates at a significantly faster rate and to a higher, more persistent titre compared with BFV, perhaps indicating mosquitoes may be infectious with RRV for longer than with BFV. This investigation resolved a greater diversity of BFV, and a greater understanding of the evolutionary dynamics and history was attained. Full article
(This article belongs to the Special Issue Viral Molecular Epidemiology)
Show Figures

Figure 1

13 pages, 461 KB  
Perspective
Confronting the Emerging Threat to Public Health in Northern Australia of Neglected Indigenous Arboviruses
by Narayan Gyawali and Andrew W. Taylor-Robinson
Trop. Med. Infect. Dis. 2017, 2(4), 55; https://doi.org/10.3390/tropicalmed2040055 - 17 Oct 2017
Cited by 11 | Viewed by 6514
Abstract
In excess of 75 arboviruses have been identified in Australia, some of which are now well established as causative agents of debilitating diseases. These include Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus, each of which may be detected by [...] Read more.
In excess of 75 arboviruses have been identified in Australia, some of which are now well established as causative agents of debilitating diseases. These include Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus, each of which may be detected by both antibody-based recognition and molecular typing. However, for most of the remaining arboviruses that may be associated with pathology in humans, routine tests are not available to diagnose infection. A number of these so-called ‘neglected’ or ‘orphan’ arboviruses that are indigenous to Australia might have been infecting humans at a regular rate for decades. Some of them may be associated with undifferentiated febrile illness—fever, the cause of which is not obvious—for which around half of all cases each year remain undiagnosed. This is of particular relevance to Northern Australia, given the Commonwealth Government’s transformative vision for the midterm future of massive infrastructure investment in this region. An expansion of the industrial and business development of this previously underpopulated region is predicted. This is set to bring into intimate proximity infection-naïve human hosts, native reservoir animals, and vector mosquitoes, thereby creating a perfect storm for increased prevalence of infection with neglected Australian arboviruses. Moreover, the escalating rate and effects of climate change that are increasingly observed in the tropical north of the country are likely to lead to elevated numbers of arbovirus-transmitting mosquitoes. As a commensurate response, continuing assiduous attention to vector monitoring and control is required. In this overall context, improved epidemiological surveillance and diagnostic screening, including establishing novel, rapid pan-viral tests to facilitate early diagnosis and appropriate treatment of febrile primary care patients, should be considered a public health priority. Investment in a rigorous identification program would reduce the possibility of significant outbreaks of these indigenous arboviruses at a time when population growth accelerates in Northern Australia. Full article
Show Figures

Figure 1

Back to TopTop