Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Babesia divergens metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3929 KiB  
Article
Application of Multiplatform Mass Spectrometry to the Study of Babesia divergens Metabolism and the Pathogenesis of Human Babesiosis
by Miguel Fernández-García, Luis Miguel Gonzalez, Elena Sevilla, Aitor Gil, Henrique Santos-Oliveira, Belen Revuelta, Coral Barbas, Mª Fernanda Rey-Stolle, Estrella Montero and Antonia García
Int. J. Mol. Sci. 2025, 26(16), 7677; https://doi.org/10.3390/ijms26167677 - 8 Aug 2025
Viewed by 146
Abstract
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in [...] Read more.
Babesia divergens is a tick-borne apicomplexan parasite that causes human babesiosis, a malaria-like disease. B. divergens metabolism remains poorly characterized. Here, we employed a multiplatform mass spectrometry-based metabolomics approach (using CE-TOF/MS, GC-QTOF/MS, LC-QTOF/MS, and LC-QqQ/MS) to profile intra- and extracellular metabolic changes in B. divergens-infected and uninfected red blood cells (RBCs) and their supernatants. Our results indicate alterations in the metabolome caused by B. divergens infection and proliferation within RBCs. These findings are consistent with the major metabolic dependencies of B. divergens, including extracellular glucose, glutamine, and arginine, accompanied by the accumulation of glycolytic and TCA cycle intermediates. We identified altered nucleotide metabolism, pentose phosphate pathway activity, and redox imbalance. Depletion of lysoglycerophospholipids, glucose, arginine, and glutamine, and accumulation of free heme and sphingolipids suggested pathogenic effects. Growth experiments indicate that glucose and glutamine, but not hypoxanthine, are required for parasite growth. We additionally discovered a phosphorylated HEPES derivative (PEPES) produced upon B. divergens infection of RBCs in vitro. Collectively, these findings and their global interpretation provide insights into B. divergens metabolism and metabolic dependencies and host–parasite metabolic interactions and outline potential directions for future studies on human babesiosis diagnosis, prognosis assessment, and treatment. Full article
(This article belongs to the Special Issue Research Progress of Metabolomics in Health and Disease)
Show Figures

Figure 1

Back to TopTop