Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Ba0.6Sr0.4TiO3 NPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4357 KiB  
Article
Tuning the Ferroelectric Response of Sandwich-Structured Nanocomposites with the Coordination of Ba0.6Sr0.4TiO3 Nanoparticles and Boron Nitride Nanosheets to Achieve Excellent Discharge Energy Density and Efficiency
by Zhihui Yi, Zhuo Wang, Dan Wu and Ying Xue
Polymers 2023, 15(17), 3642; https://doi.org/10.3390/polym15173642 - 4 Sep 2023
Cited by 1 | Viewed by 1360
Abstract
With the rapid development of new electronic products and sustainable energy systems, there is an increasing demand for electrical energy storage devices such as electrostatic capacitors. In order to comprehensively improve the dielectric, insulating, and energy storage properties of PVDF-based composites, sandwich-structured composites [...] Read more.
With the rapid development of new electronic products and sustainable energy systems, there is an increasing demand for electrical energy storage devices such as electrostatic capacitors. In order to comprehensively improve the dielectric, insulating, and energy storage properties of PVDF-based composites, sandwich-structured composites were prepared by layer-by-layer solution casting. The outer layers of the sandwich structure composite are both PVDF/boron nitride nanosheet composites, and the middle layer is a PVDF/Ba0.6Sr0.4TiO3 nanoparticles composite. The structural and electrical properties of the sandwich-structured composites were characterized and analyzed. The results show that when the volume percentage of Ba0.6Sr0.4TiO3 nanoparticles in the middle layer of the sandwich structure composite is 1 vol.%, the dielectric properties are significantly improved. Its dielectric constant is 8.99 at 10 kHz, the dielectric loss factor is 0.025, and it has better insulating properties and resistance to electrical breakdown. Benefiting from the high breakdown electric field strength and the large maximum electrical displacement, the sandwich-structured composites with 1 vol.% and Ba0.6Sr0.4TiO3 nanoparticles in the middle layer show a superior discharge energy density of 8.9 J/cm3, and excellent charge and discharge energy efficiency of 76%. The sandwich structure composite achieves the goal of simultaneous improvement in breakdown electric field strength and dielectric constant. Full article
Show Figures

Figure 1

15 pages, 3114 KiB  
Article
Nanoparticulate Perovskites for Photocatalytic Water Reduction
by Sven A. Freimann, Catherine E. Housecroft and Edwin C. Constable
Nanomaterials 2023, 13(14), 2094; https://doi.org/10.3390/nano13142094 - 18 Jul 2023
Viewed by 1472
Abstract
SrTiO3 and BaTiO3 nanoparticles (NPs) were activated using H2O2 or aqueous HNO3, and pristine and activated NPs were functionalized with a 2,2′-bipyridine phosphonic acid anchoring ligand (1), followed by reaction with RuCl3. [...] Read more.
SrTiO3 and BaTiO3 nanoparticles (NPs) were activated using H2O2 or aqueous HNO3, and pristine and activated NPs were functionalized with a 2,2′-bipyridine phosphonic acid anchoring ligand (1), followed by reaction with RuCl3.3H2O and bpy, RhCl3.3H2O and bpy, or RuCl3.3H2O. The surface-bound metal complex functionalized NPs were used for the photogeneration of H2 from water, and their activity was compared to related systems using TiO2 NPs. The role of pH during surface complexation was found to be important. The NPs were characterized using Fourier transform infrared (FTIR) and solid-state absorption spectroscopies, thermogravimetric analysis mass spectrometry (TGA-MS), and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and the dihydrogen generation was analyzed using gas chromatography–mass spectrometry (GC-MS). Our findings indicate that extensively functionalized SrTiO3 or BaTiO3 NPs may perform better than TiO2 NPs for water reduction. Full article
Show Figures

Graphical abstract

19 pages, 50281 KiB  
Article
The Effect of TiO2 Nanoparticles on the Composition and Ultrastructure of Wheat
by Maria-Loredana Soran, Ildiko Lung, Ocsana Opriș, Otilia Culicov, Alexandra Ciorîță, Adina Stegarescu, Inga Zinicovscaia, Nikita Yushin, Konstantin Vergel, Irina Kacso and Gheorghe Borodi
Nanomaterials 2021, 11(12), 3413; https://doi.org/10.3390/nano11123413 - 16 Dec 2021
Cited by 13 | Viewed by 3168
Abstract
The present work aims to follow the influence of TiO2 nanoparticles (TiO2 NPs) on bioactive compounds, the elemental content of wheat, and on wheat leaves’ ultrastructure. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and transmission [...] Read more.
The present work aims to follow the influence of TiO2 nanoparticles (TiO2 NPs) on bioactive compounds, the elemental content of wheat, and on wheat leaves’ ultrastructure. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The concentration of phenolic compounds, assimilation pigments, antioxidant capacity, elemental content, as well as the ultrastructural changes that may occur in the wheat plants grown in the presence or absence of TiO2 NPs were evaluated. In plants grown in the presence of TiO2 NPs, the amount of assimilating pigments and total polyphenols decreased compared to the control sample, while the antioxidant activity of plants grown in amended soil was higher than those grown in control soil. Following ultrastructural analysis, no significant changes were observed in the leaves of TiO2-treated plants. Application of TiO2 NPs to soil caused a significant reaction of the plant to stress conditions. This was revealed by the increase of antioxidant capacity and the decrease of chlorophyll, total polyphenols, and carotenoids. Besides, the application of TiO2 NPs led to significant positive (K, Zn, Br, and Mo) and negative (Na, Mn, Fe, As, Sr, Sb, and Ba) variation of content. Full article
Show Figures

Figure 1

11 pages, 4670 KiB  
Article
Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba0.6Sr0.4TiO3 Nanoparticles
by Shaohui Liu, Shaomei Xiu, Bo Shen, Jiwei Zhai and Ling Bing Kong
Polymers 2016, 8(2), 45; https://doi.org/10.3390/polym8020045 - 16 Feb 2016
Cited by 59 | Viewed by 8134
Abstract
Ceramic-polymer nanocomposites, consisting of surface hydroxylated cube-shaped Ba0.6Sr0.4TiO3 nanoparticles (BST–NPs) as fillers and poly(vinylidenefluoride) (PVDF) as matrix, have been fabricated by using a solution casting method. The nanocomposites exhibited increased dielectric constant and improved breakdown strength. Dielectric constants [...] Read more.
Ceramic-polymer nanocomposites, consisting of surface hydroxylated cube-shaped Ba0.6Sr0.4TiO3 nanoparticles (BST–NPs) as fillers and poly(vinylidenefluoride) (PVDF) as matrix, have been fabricated by using a solution casting method. The nanocomposites exhibited increased dielectric constant and improved breakdown strength. Dielectric constants of the nanocomposite with surface hydroxylated BST–NPs (BST–NPs–OH) were higher as compared with those of their untreated BST–NPs composites. The sample with 40 vol % BST–NPs–OH had a dielectric constant of 36 (1 kHz). Different theoretical models have been employed to predict the dielectric constants of the nanocomposites, in order to compare with the experimental data. The BST–NPs–OH/PVDF composites also exhibited higher breakdown strength than their BST–NP/PVDF counterparts. A maximal energy density of 3.9 J/cm3 was achieved in the composite with 5 vol % BST–NPs–OH. This hydroxylation strategy could be used as a reference to develop ceramic-polymer composite materials with enhanced dielectric properties and energy storage densities. Full article
(This article belongs to the Special Issue Nano- and Microcomposites for Electrical Engineering Applications)
Show Figures

Graphical abstract

Back to TopTop