Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = BSAAO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3100 KiB  
Article
Effect of B4C Content on the Oxidation Resistance of a B4C-SiO2–Albite/Al2O3 Coating at 900 °C
by Pengbin Chen, Quanhao Luo, Haoze Wang, Huan He, Tao Liu, Yingheng Huang and Tianquan Liang
Coatings 2025, 15(6), 688; https://doi.org/10.3390/coatings15060688 - 6 Jun 2025
Viewed by 741
Abstract
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO [...] Read more.
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO2–Albite/Al2O3 (BSA/AO) double-layer coating by the slurry brushing method at 900 °C was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and differential scanning calorimetry (DSC) with thermogravimetric analysis (TGA) in this work. It is indicated that the composite coating with 20 wt% B4C exhibits excellent oxidation resistance at high temperature, which shows a mass loss of only 0.11% for the coated carbon block after being exposed to 900 °C for 196 h. This is attributed to the in situ formation of a thin, dense glass layer with good self-healing ability at the interface of the B4C-SiO2–Albite/Al2O3 composite coating within 1 h and the persistence and stability of the dense glass layer during exposure. The mechanism is discussed in detail. Full article
Show Figures

Figure 1

19 pages, 801 KiB  
Review
Perspectives on Using a Competitive Exclusion Approach to Control Listeria monocytogenes in Biological Soil Amendments of Animal Origin (BSAAO): A Review
by Hongye Wang, Jinge Huang and Xiuping Jiang
Appl. Microbiol. 2023, 3(3), 786-804; https://doi.org/10.3390/applmicrobiol3030055 - 14 Jul 2023
Viewed by 2161
Abstract
Biological soil amendments of animal origin (BSAAO), such as animal waste or animal-waste-based composts, may contain foodborne pathogens such as Listeria monocytogenes. Due to the ubiquitous nature of Listeria, it is essential to understand the behavior of L. monocytogenes in BSAAO [...] Read more.
Biological soil amendments of animal origin (BSAAO), such as animal waste or animal-waste-based composts, may contain foodborne pathogens such as Listeria monocytogenes. Due to the ubiquitous nature of Listeria, it is essential to understand the behavior of L. monocytogenes in BSAAO in order to develop preharvest prevention strategies to reduce pathogen contamination. As biological control agents, competitive exclusion (CE) microorganisms have been widely utilized in agriculture to control plant- or foodborne pathogens. Due to the diverse microbial community, animal wastes and composts are the potential sources for isolating CE strains for pathogen control. To explore the potential of using CE to control L. monocytogenes in BSAAO, we thoroughly reviewed the studies on the fate of L. monocytogenes in the agriculture field, and in the isolation and identification of CE from different matrices, and the applications of CE as a biological control method. Future studies using a next-generation sequencing approach to identify and characterize CE strains in complex microbial communities can provide a comprehensive picture of the microbial interactions between invading pathogens and the indigenous microbiota in BSAAO. This comprehensive review will provide insight into the development of effective biological control measures for preventing L. monocytogenes contamination in the agricultural field and enhancing food safety. Full article
Show Figures

Figure 1

Back to TopTop