Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Astragalus armatus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2370 KiB  
Article
Ultrasound-Assisted Extraction, LC–MS/MS Analysis, Anticholinesterase, and Antioxidant Activities of Valuable Natural Metabolites from Astragalus armatus Willd.: In Silico Molecular Docking and In Vitro Enzymatic Studies
by Sabrina Lekmine, Samira Bendjedid, Ouided Benslama, Antonio Ignacio Martín-García, Samira Boussekine, Kenza Kadi, Salah Akkal, Gema Nieto, Rokayya Sami, Amina A. M. Al-Mushhin, Morooj M. Baakdah, Abeer M. Aljaadi and Saif A. Alharthy
Antioxidants 2022, 11(10), 2000; https://doi.org/10.3390/antiox11102000 - 9 Oct 2022
Cited by 19 | Viewed by 3355
Abstract
The Astragalus armatus Willd. plant’s phenolic constituent extraction and identification were optimized using the ultrasound-assisted extraction (UAE) method and the LC–MS/MS analysis, respectively. Additionally, cupric reducing antioxidant capacity (CUPRAC), beta carotene, reducing power, DMSO alcalin, silver nanoparticle (SNP)-based method, phenanthroline, and hydroxyl radical [...] Read more.
The Astragalus armatus Willd. plant’s phenolic constituent extraction and identification were optimized using the ultrasound-assisted extraction (UAE) method and the LC–MS/MS analysis, respectively. Additionally, cupric reducing antioxidant capacity (CUPRAC), beta carotene, reducing power, DMSO alcalin, silver nanoparticle (SNP)-based method, phenanthroline, and hydroxyl radical tests were utilized to assess the extract’s antioxidant capacity, while the neuroprotective effect was examined in vitro against acetylcholinesterase enzyme. This study accurately estimated the chemical bonding between the identified phenolic molecules derived from LC–MS/MS and the AChE. The extract was found to contain sixteen phenolic substances, and rosmarinic, protocatechuic, and chlorogenic acids, as well as 4-hydroxybenzoic, hyperoside, and hesperidin, were the most abundant substances in the extract. In all antioxidant experiments, the plant extract demonstrated strong antioxidant activity and a significant inhibitory impact against AChE (40.25 ± 1.41 μg/mL). According to molecular docking affinity to the enzyme AChE, the top-five molecules were found to be luteolin, quercetin, naringenin, rosmarinic acid, and kaempferol. Furthermore, these tested polyphenols satisfy the essential requirements for drug-like characteristics and Lipinski’s rule of five. These results highlight the significance of the A. armatus plant in cosmetics, as food additives, and in the pharmaceutical industry due to its rosmarinic and chlorogenic acid content. Full article
Show Figures

Figure 1

13 pages, 3866 KiB  
Article
Optimized Chemical Extraction Methods of Antimicrobial Peptides from Roots and Leaves of Extremophilic Plants: Anthyllis sericea and Astragalus armatus Collected from the Tunisian Desert
by Raoua Ben Brahim, Hasna Ellouzi, Khaoula Fouzai, Nedra Asses, Mohammed Neffati, Jean Marc Sabatier, Philippe Bulet and Imed Regaya
Antibiotics 2022, 11(10), 1302; https://doi.org/10.3390/antibiotics11101302 - 24 Sep 2022
Cited by 9 | Viewed by 3442
Abstract
Extraction methods depend mainly on the chemical nature of the extracted molecule. For these reasons, the selection of the extraction medium is a vital part of obtaining these molecules. The extraction of antimicrobial peptides (AMPs) from extremophile plants is important because of its [...] Read more.
Extraction methods depend mainly on the chemical nature of the extracted molecule. For these reasons, the selection of the extraction medium is a vital part of obtaining these molecules. The extraction of antimicrobial peptides (AMPs) from extremophile plants is important because of its potential pharmaceutical applications. This work focused on the evaluation of several solvents for the extraction of AMPs from the following two extremophile plants: Astragalus armatus and Anthyllis sericea from southern Tunisia. In order to identify the most efficient solvents and extraction solutions, we used sulfuric acid, dichloromethane, phosphate buffer, acetic acid and sodium acetate, and we tested them on leaves and roots of both the studied plants. The extracts obtained using sulfuric acid, dichloromethane and phosphate buffer extraction did not show any antimicrobial activity, whereas the acetic acid and sodium acetate extracts led to growth inhibition of some of the tested bacterial strains. The extracts of leaves and roots of An. sericea and As. armatus obtained by acetic acid and sodium acetate were proven to be active against Gram-positive bacteria and Gram-negative bacteria. Therefore, the most appropriate solvents to use for antimicrobial peptide extraction from both plants are acetic acid and sodium acetate. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and How to Find Them)
Show Figures

Figure 1

Back to TopTop