Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Arabis alpina

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 686 KiB  
Article
Effects of Different Sulfur Compounds on the Distribution Characteristics of Subcellular Lead Content in Arabis alpina L. var. parviflora Franch under Lead Stress
by Cui Xu, Li Qin, Yuan Li, Yanqun Zu and Jixiu Wang
Plants 2023, 12(4), 874; https://doi.org/10.3390/plants12040874 - 15 Feb 2023
Cited by 5 | Viewed by 2105
Abstract
Sulfur plays a vital role in the phytoremediation of lead-contaminated soil. The effects of different sulfur forms (S Na2S, and Na2SO4) on lead (Pb) absorption in hyperaccumulator Arabis alpina L. var. parviflora Franch were studied in a [...] Read more.
Sulfur plays a vital role in the phytoremediation of lead-contaminated soil. The effects of different sulfur forms (S Na2S, and Na2SO4) on lead (Pb) absorption in hyperaccumulator Arabis alpina L. var. parviflora Franch were studied in a soil pot experiment. The subcellular sulfur and lead enrichment characteristics in A. alpina were studied by adding sulfur in different forms and concentrations (0, 75, and 150 mg·kg−1) to Pb-contaminated soil. The results show that the root and shoot biomass increased by 1.94 times under Na2S and Na2SO4 treatment, and the root–shoot ratio of A. alpina increased 1.62 times under the three forms of sulfur treatments, compared with the control. Sulfur content in cell walls and soluble fractions of the root and shoot of A. alpina significantly increased 3.35~5.75 times and decreased 5.85 and 9.28 times in the organelles under 150 mg·kg−1 Na2SO4 treatment. Meanwhile, Pb content in the root and shoot cell walls of A. alpina significantly increased by 3.54 and 2.75 times, respectively. Pb content in the shoot soluble fraction increased by 3.46 times, while it significantly reduced by 3.78 times in the shoot organelle. Pb content in the root organelle and soluble fraction decreased by 2.72 and 2.46 times. Different forms and concentrations of sulfur had no regularity in the effect of Pb and sulfur content in the subcellular components of A. alpina, but the bioconcentration and translocation factors of A. alpina increased compared with the control. Under different concentrations of Na2SO4, there was a significant positive correlation between the contents of sulfur and Pb in the subcellular components of the root of A. alpina (p < 0.05). These results indicate that sulfur application can enhance the Pb resistance of A. alpina by strengthening the cell wall fixation and vacuolar compartmentalization. Full article
Show Figures

Figure 1

20 pages, 4958 KiB  
Article
Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species
by Aldrin Y. Cantila, William J. W. Thomas, Philipp E. Bayer, David Edwards and Jacqueline Batley
Plants 2022, 11(22), 3010; https://doi.org/10.3390/plants11223010 - 8 Nov 2022
Cited by 2 | Viewed by 3091
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 [...] Read more.
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars. Full article
Show Figures

Figure 1

18 pages, 2449 KiB  
Article
Multiscale Very High Resolution Topographic Models in Alpine Ecology: Pros and Cons of Airborne LiDAR and Drone-Based Stereo-Photogrammetry Technologies
by Annie S. Guillaume, Kevin Leempoel, Estelle Rochat, Aude Rogivue, Michel Kasser, Felix Gugerli, Christian Parisod and Stéphane Joost
Remote Sens. 2021, 13(8), 1588; https://doi.org/10.3390/rs13081588 - 20 Apr 2021
Cited by 14 | Viewed by 4698
Abstract
The vulnerability of alpine environments to climate change presses an urgent need to accurately model and understand these ecosystems. Popularity in the use of digital elevation models (DEMs) to derive proxy environmental variables has increased over the past decade, particularly as DEMs are [...] Read more.
The vulnerability of alpine environments to climate change presses an urgent need to accurately model and understand these ecosystems. Popularity in the use of digital elevation models (DEMs) to derive proxy environmental variables has increased over the past decade, particularly as DEMs are relatively cheaply acquired at very high resolutions (VHR; <1 m spatial resolution). Here, we implement a multiscale framework and compare DEM-derived variables produced by Light Detection and Ranging (LiDAR) and stereo-photogrammetry (PHOTO) methods, with the aim of assessing their relevance and utility in species distribution modelling (SDM). Using a case study on the arctic-alpine plant, Arabis alpina, in two valleys in the western Swiss Alps, we show that both LiDAR and PHOTO technologies can be relevant for producing DEM-derived variables for use in SDMs. We demonstrate that PHOTO DEMs, up to a spatial resolution of at least 1 m, rivalled the accuracy of LiDAR DEMs, largely owing to the customizability of PHOTO DEMs to the study sites compared to commercially available LiDAR DEMs. We obtained DEMs at spatial resolutions of 6.25 cm–8 m for PHOTO and 50 cm–32 m for LiDAR, where we determined that the optimal spatial resolutions of DEM-derived variables in SDM were between 1 and 32 m, depending on the variable and site characteristics. We found that the reduced extent of PHOTO DEMs altered the calculations of all derived variables, which had particular consequences on their relevance at the site with heterogenous terrain. However, for the homogenous site, SDMs based on PHOTO-derived variables generally had higher predictive powers than those derived from LiDAR at matching resolutions. From our results, we recommend carefully considering the required DEM extent to produce relevant derived variables. We also advocate implementing a multiscale framework to appropriately assess the ecological relevance of derived variables, where we caution against the use of VHR-DEMs finer than 50 cm in such studies. Full article
Show Figures

Graphical abstract

9 pages, 1665 KiB  
Article
Natural Variation in Adventitious Rooting in the Alpine Perennial Arabis alpina
by Priyanka Mishra, Adrian Roggen, Karin Ljung and Maria C. Albani
Plants 2020, 9(2), 184; https://doi.org/10.3390/plants9020184 - 3 Feb 2020
Cited by 9 | Viewed by 4433
Abstract
Arctic alpine species follow a mixed clonal-sexual reproductive strategy based on the environmental conditions at flowering. Here, we explored the natural variation for adventitious root formation among genotypes of the alpine perennial Arabis alpina that show differences in flowering habit. We scored the [...] Read more.
Arctic alpine species follow a mixed clonal-sexual reproductive strategy based on the environmental conditions at flowering. Here, we explored the natural variation for adventitious root formation among genotypes of the alpine perennial Arabis alpina that show differences in flowering habit. We scored the presence of adventitious roots on the hypocotyl, main stem and axillary branches on plants growing in a long-day greenhouse. We also assessed natural variation for adventitious rooting in response to foliar auxin spray. In both experimental approaches, we did not detect a correlation between adventitious rooting and flowering habit. In the greenhouse, and without the application of synthetic auxin, the accession Wca showed higher propensity to produce adventitious roots on the main stem compared to the other accessions. The transcript accumulation of the A. alpina homologue of the auxin inducible GH3.3 gene (AaGH3.3) on stems correlated with the adventitious rooting phenotype of Wca. Synthetic auxin, 1-Naphthaleneacetic acid (1-NAA), enhanced the number of plants with adventitious roots on the main stem and axillary branches. A. alpina plants showed an age-, dosage- and genotype-dependent response to 1-NAA. Among the genotypes tested, the accession Dor was insensitive to auxin and Wca responded to auxin on axillary branches. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

Back to TopTop