Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Arab Potash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 19331 KB  
Article
Impact of Dead Sea Halo-Karst Development on an Earthen Dike Rehabilitation Project
by Damien Closson, Akshay Patil, Mohamed Musthafa, Megan Gallagher and Nitin Das
Geosciences 2023, 13(2), 42; https://doi.org/10.3390/geosciences13020042 - 30 Jan 2023
Cited by 3 | Viewed by 4407
Abstract
From the 1970s, the Dead Sea experienced severe halo-karstification and anthropogenic modifications. Progressively, but at an accelerating rate, subsidence, landslides, and sinkholes have increased in number and magnitude. The hazards’ triggering factors are the terminal lake level lowering at more than one meter [...] Read more.
From the 1970s, the Dead Sea experienced severe halo-karstification and anthropogenic modifications. Progressively, but at an accelerating rate, subsidence, landslides, and sinkholes have increased in number and magnitude. The hazards’ triggering factors are the terminal lake level lowering at more than one meter per year and the dynamic equilibrium of the hydrogeological system. Over the Lisan peninsula, archived satellite images revealed the extent of the damaged areas. On 22 March 2000, the destruction of dike 19 represented a loss of 38 M USD. This is the most important event recorded since the beginning of the Dead Sea recession some 50 years ago. In 2018, a rehabilitation project of that dike started. This research analyses the viability of the reinstatement works. The advanced space borne radar interferometry technique is applied to map ground deformations before and during the project. This article reveals that the ongoing rehabilitation and reinstatement works of dike 19 are threatened by ongoing halo-karstification processes. Field observations and subsidence/uplift dynamics support this statement. The past experiences are taken into consideration to adapt industrial expansion strategies. However, the permeability of the salt pan floor could trigger a fast development of a karst system able to destroy the rehabilitated dike 19. Full article
Show Figures

Figure 1

13 pages, 925 KB  
Article
Thermodynamic Limitations and Exergy Analysis of Brackish Water Reverse Osmosis Desalination Process
by Alanood A. Alsarayreh, Mudhar A. Al-Obaidi, Alejandro Ruiz-García, Raj Patel and Iqbal M. Mujtaba
Membranes 2022, 12(1), 11; https://doi.org/10.3390/membranes12010011 - 23 Dec 2021
Cited by 14 | Viewed by 4083
Abstract
The reverse osmosis (RO) process is one of the most popular membrane technologies for the generation of freshwater from seawater and brackish water resources. An industrial scale RO desalination consumes a considerable amount of energy due to the exergy destruction in several units [...] Read more.
The reverse osmosis (RO) process is one of the most popular membrane technologies for the generation of freshwater from seawater and brackish water resources. An industrial scale RO desalination consumes a considerable amount of energy due to the exergy destruction in several units of the process. To mitigate these limitations, several colleagues focused on delivering feasible options to resolve these issues. Most importantly, the intention was to specify the most units responsible for dissipating energy. However, in the literature, no research has been done on the analysis of exergy losses and thermodynamic limitations of the RO system of the Arab Potash Company (APC). Specifically, the RO system of the APC is designed as a medium-sized, multistage, multi pass spiral wound brackish water RO desalination plant with a capacity of 1200 m3/day. Therefore, this paper intends to fill this gap and critically investigate the distribution of exergy destruction by incorporating both physical and chemical exergies of several units and compartments of the RO system. To carry out this study, a sub-model of exergy analysis was collected from the open literature and embedded into the original RO model developed by the authors of this study. The simulation results explored the most sections that cause the highest energy destruction. Specifically, it is confirmed that the major exergy destruction happens in the product stream with 95.8% of the total exergy input. However, the lowest exergy destruction happens in the mixing location of permeate of the first pass of RO desalination system with 62.28% of the total exergy input. Full article
(This article belongs to the Section Membrane Physics and Theory)
Show Figures

Figure 1

Back to TopTop