Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Apostasia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4475 KiB  
Article
Identification and Analysis of Aluminum-Activated Malate Transporter Gene Family Reveals Functional Diversification in Orchidaceae and the Expression Patterns of Dendrobium catenatum Aluminum-Activated Malate Transporters
by Fu-Cheng Peng, Meng Yuan, Lin Zhou, Bao-Qiang Zheng and Yan Wang
Int. J. Mol. Sci. 2024, 25(17), 9662; https://doi.org/10.3390/ijms25179662 - 6 Sep 2024
Cited by 2 | Viewed by 1326
Abstract
Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT [...] Read more.
Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1–4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 5766 KiB  
Article
The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae
by Qinyao Zheng, Xiaoting Luo, Ye Huang, Shi-Jie Ke and Zhong-Jian Liu
Int. J. Mol. Sci. 2024, 25(15), 8151; https://doi.org/10.3390/ijms25158151 - 26 Jul 2024
Cited by 3 | Viewed by 1297
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, [...] Read more.
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica’s mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae. Full article
(This article belongs to the Special Issue Molecular Research on Orchid Plants)
Show Figures

Figure 1

16 pages, 6802 KiB  
Article
Characteristics and Comparative Analysis of the Complete Plastomes of Apostasia fujianica and Neuwiedia malipoensis (Apostasioideae)
by Qinyao Zheng, Yuwei Wu, Shi-Jie Ke, Ding-Kun Liu and Zhong-Jian Liu
Horticulturae 2024, 10(4), 383; https://doi.org/10.3390/horticulturae10040383 - 10 Apr 2024
Cited by 1 | Viewed by 1643
Abstract
Apostasioideae, the early divergent subfamily of Orchidaceae, comprises Apostasia and Neuwiedia genera with approximately 20 species. Despite extensive research on Apostasioideae, previous studies have struggled to resolve taxonomic issues, particularly concerning the position of species within this subfamily. Here, we sequenced and annotated [...] Read more.
Apostasioideae, the early divergent subfamily of Orchidaceae, comprises Apostasia and Neuwiedia genera with approximately 20 species. Despite extensive research on Apostasioideae, previous studies have struggled to resolve taxonomic issues, particularly concerning the position of species within this subfamily. Here, we sequenced and annotated plastomes of Apostasia fujianica and Neuwiedia malipoensis, unveiling their phylogenetic relationships and shared plastome features with the other five published plastomes. We identified and analyzed the length, GC content, repeat sequences, and RSCU values of the chloroplast genomes. It is noteworthy that the chloroplast genome of N. malipoensis stands out as the largest among all known chloroplast genomes within the Apostasioideae subfamily, primarily due to contributions from both the LSC and SSC regions. Furthermore, our analysis revealed three unique structural rearrangements located approximately 10k–47k bp (ycf3–trnS-GCU) and 58k–59k bp(accD) in the LSC region and 118k–119k (ndhI) bp in the SSC region of the chloroplast genomes across all five species within the Apostasia genus, which presents a potential avenue for identifying distinctive chloroplast genetic markers, setting them apart from other orchid plants. And a total of four mutational hotspots (rpoC2, atpH, rps4, ndhK, and clpP) were identified. Moreover, our study suggested that Apostasia and Neuwiedia formed a monophyletic group, with Apostasia being sister to Neuwiedia. Within the Apostasia genus, five species were classified into two major clades, represented as follows: (A. odorata (A. shenzhenica and A. fujianica) (A. ramifera and A. wallichii)). These findings hold significance in developing DNA barcoding of Apostasioideae and contribute to the further phylogenetic understanding of Apostasioideae species. Full article
Show Figures

Figure 1

17 pages, 10310 KiB  
Article
Identification and Analysis of PEPC Gene Family Reveals Functional Diversification in Orchidaceae and the Regulation of Bacterial-Type PEPC
by Ruyi Li, Xuyong Gao, Yuwei Wu, Chunyi Wei, Ming-He Li, Ding-Kun Liu and Zhong-Jian Liu
Int. J. Mol. Sci. 2024, 25(4), 2055; https://doi.org/10.3390/ijms25042055 - 8 Feb 2024
Cited by 2 | Viewed by 2067
Abstract
Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating [...] Read more.
Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae. Full article
Show Figures

Figure 1

18 pages, 4547 KiB  
Article
Light Regulation of LoCOP1 and Its Role in Floral Scent Biosynthesis in Lilium ‘Siberia’
by Yang Liu, Qin Wang, Farhat Abbas, Yiwei Zhou, Jingjuan He, Yanping Fan and Rangcai Yu
Plants 2023, 12(10), 2004; https://doi.org/10.3390/plants12102004 - 16 May 2023
Cited by 6 | Viewed by 2128
Abstract
Light is an important environmental signal that governs plant growth, development, and metabolism. Constitutive photomorphogenic 1 (COP1) is a light signaling component that plays a vital role in plant light responses. We isolated the COP1 gene (LoCOP1) from the petals of [...] Read more.
Light is an important environmental signal that governs plant growth, development, and metabolism. Constitutive photomorphogenic 1 (COP1) is a light signaling component that plays a vital role in plant light responses. We isolated the COP1 gene (LoCOP1) from the petals of Lilium ‘Siberia’ and investigated its function. The LoCOP1 protein was found to be the most similar to Apostasia shenzhenica COP1. LoCOP1 was found to be an important factor located in the nucleus and played a negative regulatory role in floral scent production and emission using the virus-induced gene silencing (VIGS) approach. The yeast two-hybrid, β-galactosidase, and bimolecular fluorescence complementation (BiFC) assays revealed that LoCOP1 interacts with LoMYB1 and LoMYB3. Furthermore, light modified both the subcellular distribution of LoCOP1 and its interactions with LoMYB1 and MYB3 in onion cells. The findings highlighted an important regulatory mechanism in the light signaling system that governs scent emission in Lilium ‘Siberia’ by the ubiquitination and degradation of transcription factors via the proteasome pathway. Full article
(This article belongs to the Special Issue Plant Volatile Organic Compounds: Revealing the Hidden Interactions)
Show Figures

Figure 1

20 pages, 4911 KiB  
Article
Apostasia Mitochondrial Genome Analysis and Monocot Mitochondria Phylogenomics
by Shi-Jie Ke, Ding-Kun Liu, Xiong-De Tu, Xin He, Meng-Meng Zhang, Meng-Jia Zhu, Di-Yang Zhang, Cui-Li Zhang, Si-Ren Lan and Zhong-Jian Liu
Int. J. Mol. Sci. 2023, 24(9), 7837; https://doi.org/10.3390/ijms24097837 - 25 Apr 2023
Cited by 24 | Viewed by 2818
Abstract
Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, [...] Read more.
Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots. Full article
(This article belongs to the Special Issue Orchid Biochemistry)
Show Figures

Figure 1

Back to TopTop