Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Apicystis bombi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2255 KiB  
Article
Prevalence and Distribution of Three Bumblebee Pathogens from the Czech Republic
by Alena Votavová, Oldřich Trněný, Jana Staveníková, Magdaléna Dybová, Jan Brus and Olga Komzáková
Insects 2022, 13(12), 1121; https://doi.org/10.3390/insects13121121 - 5 Dec 2022
Cited by 6 | Viewed by 2216
Abstract
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three [...] Read more.
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015–2020 (Bombus terrestris/lucorum) and 2015–2017 (Bombus lapidarius). The greatest prevalence was in the case of Crithidia bombi, where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum. In the case of B. lapidarius, 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum. Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi. The greatest prevalence of C. bombi was found in urban or woodland areas. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

12 pages, 1996 KiB  
Article
The Pathogens Spillover and Incidence Correlation in Bumblebees and Honeybees in Slovenia
by Metka Pislak Ocepek, Ivan Toplak, Urška Zajc and Danilo Bevk
Pathogens 2021, 10(7), 884; https://doi.org/10.3390/pathogens10070884 - 12 Jul 2021
Cited by 20 | Viewed by 4071
Abstract
Slovenia has a long tradition of beekeeping and a high density of honeybee colonies, but less is known about bumblebees and their pathogens. Therefore, a study was conducted to define the incidence and prevalence of pathogens in bumblebees and to determine whether there [...] Read more.
Slovenia has a long tradition of beekeeping and a high density of honeybee colonies, but less is known about bumblebees and their pathogens. Therefore, a study was conducted to define the incidence and prevalence of pathogens in bumblebees and to determine whether there are links between infections in bumblebees and honeybees. In 2017 and 2018, clinically healthy workers of bumblebees (Bombus spp.) and honeybees (Apis mellifera) were collected on flowers at four different locations in Slovenia. In addition, bumblebee queens were also collected in 2018. Several pathogens were detected in the bumblebee workers using PCR and RT-PCR methods: 8.8% on acute bee paralysis virus (ABPV), 58.5% on black queen cell virus (BQCV), 6.8% on deformed wing virus (DWV), 24.5% on sacbrood bee virus (SBV), 15.6% on Lake Sinai virus (LSV), 16.3% on Nosema bombi, 8.2% on Nosema ceranae, 15.0% on Apicystis bombi and 17.0% on Crithidia bombi. In bumblebee queens, only the presence of BQCV, A. bombi and C. bombi was detected with 73.3, 26.3 and 33.3% positive samples, respectively. This study confirmed that several pathogens are regularly detected in both bumblebees and honeybees. Further studies on the pathogen transmission routes are required. Full article
(This article belongs to the Special Issue Infection in Honey Bees: Host–Pathogen Interaction and Spillover)
Show Figures

Figure 1

17 pages, 1583 KiB  
Article
Amplicon Sequencing of Variable 16S rRNA from Bacteria and ITS2 Regions from Fungi and Plants, Reveals Honeybee Susceptibility to Diseases Results from Their Forage Availability under Anthropogenic Landscapes
by Aneta A. Ptaszyńska, Przemyslaw Latoch, Paul J. Hurd, Andrew Polaszek, Joanna Michalska-Madej, Łukasz Grochowalski, Dominik Strapagiel, Sebastian Gnat, Daniel Załuski, Marek Gancarz, Robert Rusinek, Patcharin Krutmuang, Raquel Martín Hernández, Mariano Higes Pascual and Agata L. Starosta
Pathogens 2021, 10(3), 381; https://doi.org/10.3390/pathogens10030381 - 22 Mar 2021
Cited by 28 | Viewed by 7927
Abstract
European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of the 16S rRNA from [...] Read more.
European Apis mellifera and Asian Apis cerana honeybees are essential crop pollinators. Microbiome studies can provide complex information on health and fitness of these insects in relation to environmental changes, and plant availability. Amplicon sequencing of variable regions of the 16S rRNA from bacteria and the internally transcribed spacer (ITS) regions from fungi and plants allow identification of the metabiome. These methods provide a tool for monitoring otherwise uncultured microbes isolated from the gut of the honeybees. They also help monitor the composition of the gut fungi and, intriguingly, pollen collected by the insect. Here, we present data from amplicon sequencing of the 16S rRNA from bacteria and ITS2 regions from fungi and plants derived from honeybees collected at various time points from anthropogenic landscapes such as urban areas in Poland, UK, Spain, Greece, and Thailand. We have analysed microbial content of honeybee intestine as well as fungi and pollens. Furthermore, isolated DNA was used as the template for screening pathogens: Nosema apis, N. ceranae, N. bombi, tracheal mite (Acarapis woodi), any organism in the parasitic order Trypanosomatida, including Crithidia spp. (i.e., Crithidia mellificae), neogregarines including Mattesia and Apicystis spp. (i.e., Apicistis bombi). We conclude that differences between samples were mainly influenced by the bacteria, plant pollen and fungi, respectively. Moreover, honeybees feeding on a sugar based diet were more prone to fungal pathogens (Nosema ceranae) and neogregarines. In most samples Nosema sp. and neogregarines parasitized the host bee at the same time. A higher load of fungi, and bacteria groups such as Firmicutes (Lactobacillus); γ-proteobacteria, Neisseriaceae, and other unidentified bacteria was observed for Nosema ceranae and neogregarine infected honeybees. Healthy honeybees had a higher load of plant pollen, and bacteria groups such as: Orbales, Gilliamella, Snodgrassella, and Enterobacteriaceae. Finally, the period when honeybees switch to the winter generation (longer-lived forager honeybees) is the most sensitive to diet perturbations, and hence pathogen attack, for the whole beekeeping season. It is possible that evolutionary adaptation of bees fails to benefit them in the modern anthropomorphised environment. Full article
(This article belongs to the Special Issue Infection in Honey Bees: Host–Pathogen Interaction and Spillover)
Show Figures

Figure 1

Back to TopTop